Benito Chen-Charpentier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/659076/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical Evidence for the Existence of New Types of Gravity Waves of Permanent Form on Deep Water. Studies in Applied Mathematics, 1980, 62, 1-21.	1.1	124
2	Steady Gravityâ€Capillary Waves On Deep Water—1. Weakly Nonlinear Waves. Studies in Applied Mathematics, 1979, 60, 183-210.	1.1	116
3	A fractional order epidemic model for the simulation of outbreaks of influenza A(H1N1). Mathematical Methods in the Applied Sciences, 2014, 37, 2218-2226.	1.2	115
4	Transient dynamics of terrestrial carbon storage: mathematical foundation and its applications. Biogeosciences, 2017, 14, 145-161.	1.3	91
5	Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order. Mathematics and Computers in Simulation, 2016, 121, 48-63.	2.4	83
6	Network Model of Flow, Transport and Biofilm Effects in Porous Media. Transport in Porous Media, 1998, 30, 1-23.	1.2	82
7	Steady Gravity apillary Waves on Deep Water—II. Numerical Results for Finite Amplitude. Studies in Applied Mathematics, 1980, 62, 95-111.	1.1	72
8	An unconditionally positivity preserving scheme for advection–diffusion reaction equations. Mathematical and Computer Modelling, 2013, 57, 2177-2185.	2.0	66
9	Oscillatory behavior of two nonlinear microbial models of soil carbon decomposition. Biogeosciences, 2014, 11, 1817-1831.	1.3	53
10	Modeling plant virus propagation with delays. Journal of Computational and Applied Mathematics, 2017, 309, 611-621.	1.1	50
11	Combination of nonstandard schemes and Richardson's extrapolation to improve the numerical solution of population models. Mathematical and Computer Modelling, 2010, 52, 1030-1036.	2.0	46
12	A nonstandard numerical scheme of predictor–corrector type for epidemic models. Computers and Mathematics With Applications, 2010, 59, 3740-3749.	1.4	46
13	Responses of two nonlinear microbial models to warming and increased carbon input. Biogeosciences, 2016, 13, 887-902.	1.3	43
14	A mathematical model for the effect of obesity on cancer growth and on the immune system response. Applied Mathematical Modelling, 2016, 40, 4908-4920.	2.2	43
15	Transit times and mean ages for nonautonomous and autonomous compartmental systems. Journal of Mathematical Biology, 2016, 73, 1379-1398.	0.8	40
16	Two-dimensional modeling of microscale transport and biotransformation in porous media. Numerical Methods for Partial Differential Equations, 1994, 10, 65-83.	2.0	38
17	Macroscale Properties of Porous Media from a Network Model of Biofilm Processes. Transport in Porous Media, 1998, 31, 39-66.	1.2	37
18	Epidemic models with random coefficients. Mathematical and Computer Modelling, 2010, 52, 1004-1010.	2.0	34

#	Article	IF	CITATIONS
19	Random coefficient differential equation models for bacterial growth. Mathematical and Computer Modelling, 2009, 50, 885-895.	2.0	30
20	A model of biological control of plant virus propagation with delays. Journal of Computational and Applied Mathematics, 2018, 330, 855-865.	1.1	30
21	Discretizations of nonlinear differential equations using explicit finite order methods. Journal of Computational and Applied Mathematics, 1998, 90, 171-183.	1.1	26
22	A random differential transform method: Theory and applications. Applied Mathematics Letters, 2012, 25, 1490-1494.	1.5	24
23	Numerical simulation of biofilm growth in porous media. Journal of Computational and Applied Mathematics, 1999, 103, 55-66.	1.1	23
24	Mathematical modeling of crime as a social epidemic. Journal of Interdisciplinary Mathematics, 2018, 21, 623-643.	0.4	23
25	Effects of the obesity on optimal control schedules of chemotherapy on a cancerous tumor. Journal of Computational and Applied Mathematics, 2017, 309, 603-610.	1.1	22
26	lonic silicon improves endothelial cells' survival under toxic oxidative stress by overexpressing angiogenic markers and antioxidant enzymes. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 2203-2220.	1.3	22
27	Threeâ€Ðimensional Stability and Bifurcation of Capillary and Gravity Waves on Deep Water. Studies in Applied Mathematics, 1985, 72, 125-147.	1.1	20
28	Combined nonstandard numerical methods for ODEs with polynomial right-hand sides. Mathematics and Computers in Simulation, 2006, 73, 105-113.	2.4	20
29	Direct and indirect optimal control applied to plant virus propagation with seasonality and delays. Journal of Computational and Applied Mathematics, 2020, 380, 112983.	1.1	19
30	Analytic and numerical solutions of a Riccati differential equation with random coefficients. Journal of Computational and Applied Mathematics, 2013, 239, 208-219.	1.1	18
31	Polynomial Chaos for random fractional order differential equations. Applied Mathematics and Computation, 2014, 226, 123-130.	1.4	18
32	Quantifying rotavirus kinetics in the REH tumor cell line using in vitro data. Virus Research, 2018, 244, 53-63.	1.1	18
33	Non-standard Numerical Methods Applied to Subsurface Biobarrier Formation Models in Porous Media. Bulletin of Mathematical Biology, 1999, 61, 779-798.	0.9	17
34	Dynamical analysis of the transmission of seasonal diseases using the differential transformation method. Mathematical and Computer Modelling, 2009, 50, 765-776.	2.0	17
35	Stability analysis of a Komarova type model for the interactions of osteoblast and osteoclast cells during bone remodeling. Mathematical Biosciences, 2015, 264, 29-37.	0.9	16
36	Parameter estimation using polynomial chaos and maximum likelihood. International Journal of Computer Mathematics, 2014, 91, 336-346.	1.0	15

BENITO CHEN-CHARPENTIER

#	Article	IF	CITATIONS
37	A mathematical model of bone remodeling with delays. Journal of Computational and Applied Mathematics, 2016, 291, 76-84.	1.1	14
38	Nonstandard discrete approximationspreserving stability properties of continuous mathematical models. Mathematical and Computer Modelling, 2004, 40, 481-490.	2.0	13
39	Mathematical modeling of bioremediation of trichloroethylene in aquifers. Computers and Mathematics With Applications, 2008, 56, 645-656.	1.4	13
40	Numerical simulation of multi-species biofilms in porous media for different kinetics. Mathematics and Computers in Simulation, 2009, 79, 1846-1861.	2.4	12
41	Biofilm growth on medical implants with randomness. Mathematical and Computer Modelling, 2011, 54, 1682-1686.	2.0	12
42	A model for coupling fire and insect outbreak in forests. Ecological Modelling, 2014, 286, 26-36.	1.2	12
43	Modeling plant virus propagation with seasonality. Journal of Computational and Applied Mathematics, 2019, 345, 310-319.	1.1	12
44	Frobenius-Chebyshev polynomial approximations with a priori error bounds for nonlinear initial value differential problems. Computers and Mathematics With Applications, 2001, 41, 269-280.	1.4	11
45	Numerical simulation of dual-species biofilms in porous media. Applied Numerical Mathematics, 2003, 47, 377-389.	1.2	11
46	Chebyshev polynomial approximations for nonlinear differential initial value problems. Nonlinear Analysis: Theory, Methods & Applications, 2005, 63, e629-e637.	0.6	11
47	Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-8.	0.7	11
48	Constructing adaptive generalized polynomial chaos method to measure the uncertainty in continuous models: A computational approach. Mathematics and Computers in Simulation, 2015, 109, 113-129.	2.4	11
49	Modeling the Macrophage-Mediated Inflammation Involved in the Bone Fracture Healing Process. Mathematical and Computational Applications, 2019, 24, 12.	0.7	11
50	Developing a Mathematical Model of Intracellular Calcium Dynamics for Evaluating Combined Anticancer Effects of Afatinib and RP4010 in Esophageal Cancer. International Journal of Molecular Sciences, 2022, 23, 1763.	1.8	11
51	Nonstandard methods for the convective transport equation with nonlinear reactions. Numerical Methods for Partial Differential Equations, 1998, 14, 467-485.	2.0	10
52	Nonstandard methods for the convective-dispersive transport equation with nonlinear reactions. Numerical Methods for Partial Differential Equations, 1999, 15, 617-624.	2.0	10
53	Some recommendations for applying gPC (generalized polynomial chaos) to modeling: An analysis through the Airy random differential equation. Applied Mathematics and Computation, 2013, 219, 4208-4218.	1.4	10
54	The truncation error of the two-variable chebyshev series expansions. Computers and Mathematics With Applications, 2003, 45, 1647-1653.	1.4	9

#	Article	IF	CITATIONS
55	Positive numerical solution for a nonarbitrage liquidity model using nonstandard finite difference schemes. Numerical Methods for Partial Differential Equations, 2014, 30, 210-221.	2.0	9
56	Fractional Order Financial Models for Awareness and Trial Advertising Decisions. Computational Economics, 2016, 48, 555-568.	1.5	9
57	Mathematical Modeling and Characterization of the Spread of Chikungunya in Colombia. Mathematical and Computational Applications, 2019, 24, 6.	0.7	9
58	RELIABLE FINITE DIFFERENCE SCHEMES WITH APPLICATIONS IN MATHEMATICAL ECOLOGY. , 2005, , 249-285.		8
59	Modeling the effects of inflammation in bone fracture healing. AIP Conference Proceedings, 2017, , .	0.3	8
60	Nonstandard Eulerian–Lagrangian methods for multi-dimensional reactive transport problems. Applied Numerical Mathematics, 2004, 49, 225-243.	1.2	7
61	Stochastic Modeling of Plant Virus Propagation with Biological Control. Mathematics, 2021, 9, 456.	1.1	6
62	Numerical treatment of leaky aquifers in the short time range. Water Resources Research, 1982, 18, 557-562.	1.7	5
63	Consolidation Curves for Clays. Journal of Geotechcnical Engineering, 1983, 109, 1303-1312.	0.4	5
64	Chaos in the one-dimensional wave equation. Applied Mathematics Letters, 2005, 18, 85-90.	1.5	5
65	Constructing accurate polynomial approximations for nonlinear differential initial value problems. Applied Mathematics and Computation, 2007, 193, 523-534.	1.4	5
66	Upscaling from discrete to continuous mathematical models of two interacting populations. Computers and Mathematics With Applications, 2013, 66, 1606-1612.	1.4	5
67	Virus propagation with randomness. Mathematical and Computer Modelling, 2013, 57, 1816-1821.	2.0	5
68	Modeling Chagas Disease at Population Level to Explain Venezuela's Real Data. Osong Public Health and Research Perspectives, 2015, 6, 288-301.	0.7	5
69	A classification of slow convergence near parametric periodic points of discrete dynamical systems. International Journal of Computer Mathematics, 2016, 93, 1011-1021.	1.0	5
70	A Mathematical Model for Intimate Partner Violence. Mathematical and Computational Applications, 2019, 24, 29.	0.7	5
71	Combining Polynomial Chaos Expansions and the Random Variable Transformation Technique to Approximate the Density Function of Stochastic Problems, Including Some Epidemiological Models. Symmetry, 2019, 11, 43.	1.1	5
72	A simple model of immune and muscle cell crosstalk during muscle regeneration. Mathematical Biosciences, 2021, 333, 108543.	0.9	5

BENITO CHEN-CHARPENTIER

#	Article	IF	CITATIONS
73	A high-order Godunov method for one-dimensional convection-diffusion-reaction problems. Numerical Methods for Partial Differential Equations, 2000, 16, 495-512.	2.0	4
74	Required number of location-years for estimating functional lower developmental thresholds and required thermal summations of insects: The first emergence of adult Apthona nigriscutis Foudras as an example. International Journal of Pest Management, 2002, 48, 147-154.	0.9	4
75	Simulation of thick biofilm growth at the microscale. Applied Numerical Mathematics, 2002, 40, 261-271.	1.2	4
76	Optimal control of plant virus propagation. Mathematical Methods in the Applied Sciences, 2020, 43, 8147-8157.	1.2	4
77	Modeling of Subsurface Biobarrier Formation. Journal of Hazardous Substance Research, 2001, 3, .	0.3	4
78	Modeling of flow and transport at the microscale. Applied Numerical Mathematics, 2002, 40, 245-259.	1.2	3
79	Mathematical Modeling of Chemoatractant Effects on Cell Movement. , 2011, , .		3
80	Discrete and continuous approaches to modeling cell movement in the presence of a foreign stimulus. Computers and Mathematics With Applications, 2012, 64, 167-174.	1.4	3
81	Multidimensional Discrete Dynamical Systems with Slow Behavior. Differential Equations and Dynamical Systems, 2017, 29, 645.	0.5	3
82	Delays in Plant Virus Models and Their Stability. Mathematics, 2022, 10, 603.	1.1	3
83	Do the generalized polynomial chaos and Fröbenius methods retain the statistical moments of random differential equations?. Applied Mathematics Letters, 2013, 26, 553-558.	1.5	2
84	A mathematical model of tree harvesting in age-structured forests subject to beetle infestations. Computational and Applied Mathematics, 2018, 37, 3365-3384.	1.3	2
85	Maximizing tree harvesting benefit from forests under insect infestation disturbances. PLoS ONE, 2018, 13, e0200575.	1.1	2
86	Mathematical Modeling of Physical Capital Diffusion Using a Spatial Solow Model: Application to Smuggling in Venezuela. Economies, 2022, 10, 164.	1.2	2
87	Layered Solutions to a Bistable Reaction-Diffusion Equation. Journal of Differential Equations, 1995, 117, 217-244.	1.1	1
88	Molecular dynamic simulations of gases using a split-Hamiltonian method. Applied Numerical Mathematics, 2001, 38, 21-48.	1.2	1
89	Analysis and Models in Interdisciplinary Mathematics. Abstract and Applied Analysis, 2014, 2014, 1-2.	0.3	1
90	Using models to advance medicine: mathematical modeling of post-myocardial infarction left ventricular remodeling. Computer Methods in Biomechanics and Biomedical Engineering, 2022, 25, 298-307.	0.9	1

BENITO CHEN-CHARPENTIER

#	Article	IF	CITATIONS
91	Delayed yield. An exact quasi-three dimensional model for free-aquifers. Advances in Water Resources, 1983, 6, 54-58.	1.7	0
92	A computer science approach for solving elliptic differential equations. Numerical Methods for Partial Differential Equations, 1995, 11, 573-590.	2.0	0
93	Numerical simulation of biofilm-forming bacteria and other microbes in porous media. Developments in Water Science, 2002, 47, 819-826.	0.1	0
94	Explicit mixed finite order Runge–Kutta methods. Applied Numerical Mathematics, 2003, 44, 21-30.	1.2	0
95	Biofilms in Porous Media: Mathematical Modeling and Numerical Simulation. , 2007, , 481-511.		0
96	Polynomial approximation of nonlinear differential systems with prefixed accuracy. Applied Mathematics and Computation, 2011, 218, 1650-1657.	1.4	0
97	Analysis and Models in Interdisciplinary Mathematics 2016. Abstract and Applied Analysis, 2016, 2016, 1-1.	0.3	0
98	On the Inverse of the Caputo Matrix Exponential. Mathematics, 2019, 7, 1137.	1.1	0
99	Modeling the effects of growth factors on bone fracture healing. AIP Conference Proceedings, 2019, ,	0.3	0
100	Effects of a Discrete Time Delay on an HIV Pandemic. Springer Proceedings in Mathematics and Statistics, 2015, , 57-73.	0.1	0
101	Effects of discrete time delays and parameters variation on dynamical systems. Biomath, 2015, 4, .	0.3	0
102	A Continuous Model of Marital Relations with Stochastic Differential Equations. Mathematical and Computational Applications, 2021, 26, 3.	0.7	0
103	Viability of Pentadesma in reduced habitat ecosystems within two climatic regions with fruit harvesting. Journal of Biological Dynamics, 2022, 16, 207-235.	0.8	0