
David Brus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6590657/publications.pdf Version: 2024-02-01

DAVID RDUS

#	Article	IF	CITATIONS
1	An extensive data set for in situ microphysical characterization of low-level clouds in a Finnish sub-Arctic site. Earth System Science Data, 2022, 14, 637-649.	3.7	2
2	Simulation and field campaign evaluation of an optical particle counter on a fixed-wing UAV. Atmospheric Measurement Techniques, 2022, 15, 2061-2076.	1.2	3
3	Measurement report: Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the Hyyti刹苑的oreal forest. Atmospheric Chemistry and Physics, 2022, 22, 5117-5145.	1.9	4
4	Measurement report: Properties of aerosol and gases in the vertical profile during the LAPSE-RATE campaign. Atmospheric Chemistry and Physics, 2021, 21, 517-533.	1.9	10
5	Demonstration of a Remotely Piloted Atmospheric Measurement and Charge Release Platform for Geoengineering. Journal of Atmospheric and Oceanic Technology, 2021, 38, 63-75.	0.5	10
6	Atmospheric aerosol, gases, and meteorological parameters measured during the LAPSE-RATE campaign by the Finnish Meteorological Institute and Kansas State University. Earth System Science Data, 2021, 13, 2909-2922.	3.7	3
7	Winter atmospheric boundary layer observations over sea ice in the coastal zone of the Bay of Bothnia (Baltic Sea). Earth System Science Data, 2021, 13, 33-42.	3.7	4
8	Development of Community, Capabilities, and Understanding through Unmanned Aircraft-Based Atmospheric Research: The LAPSE-RATE Campaign. Bulletin of the American Meteorological Society, 2020, 101, E684-E699.	1.7	38
9	Online measurements of very low elemental and organic carbon concentrations in aerosols at a subarctic remote station. Atmospheric Environment, 2020, 226, 117380.	1.9	5
10	Design and field campaign validation of a multi-rotor unmanned aerial vehicle and optical particle counter. Atmospheric Measurement Techniques, 2020, 13, 6613-6630.	1.2	13
11	Data generated during the 2018 LAPSE-RATE campaign: an introduction and overview. Earth System Science Data, 2020, 12, 3357-3366.	3.7	18
12	In situ cloud ground-based measurements in the Finnish sub-Arctic: intercomparison of three cloud spectrometer setups. Atmospheric Measurement Techniques, 2020, 13, 5129-5147.	1.2	6
13	Concentrations and Adsorption Isotherms for Amphiphilic Surfactants in PM ₁ Aerosols from Different Regions of Europe. Environmental Science & Technology, 2019, 53, 12379-12388.	4.6	25
14	Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign. Sensors, 2019, 19, 2179.	2.1	88
15	A Finnish Meteorological Institute–Aerosol Cloud Interaction Tube (FMI–ACIT): Experimental setup and tests of proper operation. Journal of Chemical Physics, 2018, 149, 124201.	1.2	1
16	Size-selected black carbon mass distributions and mixing state in polluted and clean environments of northern India. Atmospheric Chemistry and Physics, 2017, 17, 371-383.	1.9	35
17	Temperature-Dependent Diffusion of H2SO4 in Air at Atmospherically Relevant Conditions: Laboratory Measurements Using Laminar Flow Technique. Atmosphere, 2017, 8, 132.	1.0	6
18	Profiling water vapor mixing ratios in Finland by means of aÂRaman lidar, aÂsatellite and aÂmodel. Atmospheric Measurement Techniques, 2017, 10, 4303-4316.	1.2	17

David Brus

#	Article	IF	CITATIONS
19	Applications and limitations of constrained high-resolution peak fitting on low resolving power mass spectra from the ToF-ACSM. Atmospheric Measurement Techniques, 2016, 9, 3263-3281.	1.2	24
20	BAECC: A Field Campaign to Elucidate the Impact of Biogenic Aerosols on Clouds and Climate. Bulletin of the American Meteorological Society, 2016, 97, 1909-1928.	1.7	71
21	Effect of ions on sulfuric acidâ€water binary particle formation: 2. Experimental data and comparison with QCâ€normalized classical nucleation theory. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1752-1775.	1.2	99
22	Effect of ions on sulfuric acidâ€water binary particle formation: 1. Theory for kinetic†and nucleationâ€type particle formation and atmospheric implications. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1736-1751.	1.2	34
23	Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic. Atmospheric Chemistry and Physics, 2016, 16, 1271-1287.	1.9	97
24	Total sulfate vs. sulfuric acid monomer concenterations in nucleation studies. Atmospheric Chemistry and Physics, 2015, 15, 3429-3443.	1.9	16
25	Black carbon concentrations and mixing state in the Finnish Arctic. Atmospheric Chemistry and Physics, 2015, 15, 10057-10070.	1.9	51
26	A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network. Atmospheric Chemistry and Physics, 2015, 15, 12211-12229.	1.9	58
27	Homogenous nucleation rates of n-propanol measured in the Laminar Flow Diffusion Chamber at different total pressures. Journal of Chemical Physics, 2014, 140, 174301.	1.2	3
28	Growth of sulphuric acid nanoparticles under wet and dry conditions. Atmospheric Chemistry and Physics, 2014, 14, 6461-6475.	1.9	12
29	Relationships between particles, cloud condensation nuclei and cloud droplet activation during the third Pallas Cloud Experiment. Atmospheric Chemistry and Physics, 2012, 12, 11435-11450.	1.9	29
30	Effect of the summer monsoon on aerosols at two measurement stations in Northern India – Part 1: PM and BC concentrations. Atmospheric Chemistry and Physics, 2011, 11, 8271-8282.	1.9	31
31	Effect of the summer monsoon on aerosols at two measurement stations in Northern India – Part 2: Physical and optical properties. Atmospheric Chemistry and Physics, 2011, 11, 8283-8294.	1.9	38
32	Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions. Atmospheric Chemistry and Physics, 2011, 11, 5277-5287.	1.9	44
33	Atmospheric nucleation: highlights of the EUCAARI project and future directions. Atmospheric Chemistry and Physics, 2010, 10, 10829-10848.	1.9	144
34	The Role of Sulfuric Acid in Atmospheric Nucleation. Science, 2010, 327, 1243-1246.	6.0	694
35	Homogeneous water nucleation in a laminar flow diffusion chamber. Journal of Chemical Physics, 2010, 132, 244505.	1.2	33
36	How ambient pressure influences water droplet nucleation at tropospheric conditions. Geophysical Research Letters, 2010, 37, .	1.5	5

David Brus

#	Article	IF	CITATIONS
37	A Computational Fluid Dynamics Approach to Nucleation in the Waterâ^'Sulfuric Acid System. Journal of Physical Chemistry A, 2010, 114, 8033-8042.	1.1	22
38	Homogeneous nucleation rate measurements in supersaturated water vapor II. Journal of Chemical Physics, 2009, 131, 074507.	1.2	31
39	Re-evaluation of the Pressure Effect for Nucleation in Laminar Flow Diffusion Chamber Experiments with Fluent and the Fine Particle Model. Journal of Physical Chemistry A, 2009, 113, 1434-1439.	1.1	8
40	Unraveling the "Pressure Effect―in Nucleation. Physical Review Letters, 2008, 101, 125703.	2.9	47
41	Homogeneous nucleation rate measurements in supersaturated water vapor. Journal of Chemical Physics, 2008, 129, 174501.	1.2	43
42	Homogeneous Nucleation Rate in Supersaturated Water Vapor. , 2007, , 134-138.		1
43	The Effect of Total Pressure on Nucleation in a Laminar Flow Diffusion Chamber: n-Pentanol + Helium. , 2007, , 293-296.		1
44	Homogeneous nucleation rate measurements of 1-propanol in helium: The effect of carrier gas pressure. Journal of Chemical Physics, 2006, 124, 164306.	1.2	37
45	The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium. Journal of Chemical Physics, 2006, 124, 224304.	1.2	21
46	Homogeneous nucleation rate measurements of 1-butanol in helium: A comparative study of a thermal diffusion cloud chamber and a laminar flow diffusion chamber. Journal of Chemical Physics, 2005, 122, 214506.	1.2	39