Luca Murru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6590589/publications.pdf

Version: 2024-02-01

471371 454834 1,014 31 17 30 h-index citations g-index papers 32 32 32 1759 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	The epilepsy-associated protein PCDH19 undergoes NMDA receptor-dependent proteolytic cleavage and regulates the expression of immediate-early genes. Cell Reports, 2022, 39, 110857.	2.9	10
2	ATM rules neurodevelopment and glutamatergic transmission in the hippocampus but not in the cortex. Cell Death and Disease, 2022, 13 , .	2.7	5
3	Lateral habenula dysfunctions in Tm4sf2â~ly mice model for neurodevelopmental disorder. Neurobiology of Disease, 2021, 148, 105189.	2.1	8
4	The DNA repair protein ATM as a target in autism spectrum disorder. JCI Insight, 2021, 6, .	2.3	13
5	Arhgap22 Disruption Leads to RAC1 Hyperactivity Affecting Hippocampal Glutamatergic Synapses and Cognition in Mice. Molecular Neurobiology, 2021, 58, 6092-6110.	1.9	4
6	The Epilepsy-Related Protein PCDH19 Regulates Tonic Inhibition, GABAAR Kinetics, and the Intrinsic Excitability of Hippocampal Neurons. Molecular Neurobiology, 2020, 57, 5336-5351.	1.9	22
7	Nesfatin-1 decreases the motivational and rewarding value of food. Neuropsychopharmacology, 2020, 45, 1645-1655.	2.8	22
8	TSPAN5 Enriched Microdomains Provide a Platform for Dendritic Spine Maturation through Neuroligin-1 Clustering. Cell Reports, 2019, 29, 1130-1146.e8.	2.9	17
9	Tetraspanins shape the synapse. Molecular and Cellular Neurosciences, 2018, 91, 76-81.	1.0	24
10	Glutamatergic synapses in neurodevelopmental disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 328-342.	2.5	109
11	Hyperactivity of Rac1-GTPase pathway impairs neuritogenesis of cortical neurons by altering actin dynamics. Scientific Reports, 2018, 8, 7254.	1.6	32
12	eEF2K/eEF2 Pathway Controls the Excitation/Inhibition Balance and Susceptibility to Epileptic Seizures. Cerebral Cortex, 2017, 27, bhw075.	1.6	57
13	Epilepsy and intellectual disability linked protein Shrm4 interaction with GABABRs shapes inhibitory neurotransmission. Nature Communications, 2017, 8, 14536.	5.8	31
14	Pharmacological Modulation of AMPAR Rescues Intellectual Disability-Like Phenotype in Tm4sf2â~'/y Mice. Cerebral Cortex, 2017, 27, 5369-5384.	1.6	33
15	Myosin IXa Binds AMPAR and Regulates Synaptic Structure, LTP, and Cognitive Function. Frontiers in Molecular Neuroscience, 2016, 9, 1.	1.4	61
16	New Role of ATM in Controlling GABAergic Tone During Development. Cerebral Cortex, 2016, 26, 3879-3888.	1.6	20
17	Biosynthesis of glycerol phosphate is associated with long-term potentiation in hippocampal neurons. Metabolomics, 2016, 12, 133.	1.4	10
18	Oligophrenin-1 regulates number, morphology and synaptic properties of adult-born inhibitory interneurons in the olfactory bulb. Human Molecular Genetics, 2016, 25, ddw340.	1.4	13

#	Article	IF	Citations
19	LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro-molecular complex. Frontiers in Molecular Neuroscience, 2014, 7, 49.	1.4	82
20	The Neurobiology of X-Linked Intellectual Disability. Neuroscientist, 2013, 19, 541-552.	2.6	42
21	Changes in Expression and Function of Extrasynaptic GABA _A Receptors in the Rat Hippocampus during Pregnancy and after Delivery. Journal of Neuroscience, 2009, 29, 1755-1765.	1.7	83
22	Isoniazid-induced reduction in GABAergic neurotransmission alters the function of the cerebellar cortical circuit. Neuroscience, 2008, 154, 710-719.	1.1	12
23	2-Phenyl-imidazo[1,2- <i>a</i>)]pyridine Compounds Containing Hydrophilic Groups as Potent and Selective Ligands for Peripheral Benzodiazepine Receptors: Synthesis, Binding Affinity and Electrophysiological Studies. Journal of Medicinal Chemistry, 2008, 51, 6876-6888.	2.9	90
24	P.1.17 Progesterone induced-changes in gene expression of delta subunit GABAA receptor in rat hippocampal neurons in culture. European Neuropsychopharmacology, 2007, 17, S15-S16.	0.3	0
25	Flumazenil selectively prevents the increase in $\hat{l}\pm4$ -subunit gene expression and an associated change in GABAA receptor function induced by ethanol withdrawal. Journal of Neurochemistry, 2007, 102, 657-666.	2.1	16
26	The muscle relaxant thiocolchicoside is an antagonist of GABAA receptor function in the central nervous system. Neuropharmacology, 2006, 51, 805-815.	2.0	30
27	Changes in expression of the ? subunit of the GABAAreceptor and in receptor function induced by progesterone exposure and withdrawal. Journal of Neurochemistry, 2006, 99, 321-332.	2.1	25
28	Neurosteroids, GABAA receptors, and ethanol dependence. Psychopharmacology, 2006, 186, 267-280.	1.5	77
29	Human astrocytes can be induced to differentiate into cells with neuronal phenotype. Experimental Cell Research, 2006, 312, 2336-2346.	1.2	14
30	Plastic neuronal changes in GABAA receptor gene expression induced by progesterone metabolites: In vitro molecular and functional studies. Pharmacology Biochemistry and Behavior, 2006, 84, 545-554.	1.3	22
31	Distinct patterns of expression and regulation of GABAA receptors containing the δ subunit in cerebellar granule and hippocampal neurons. Journal of Neurochemistry, 2005, 94, 659-671.	2.1	30