Claude Sauter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6590426/publications.pdf

Version: 2024-02-01

218677 254184 1,941 57 26 43 h-index citations g-index papers 62 62 62 2275 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from Escherichia coli. Nucleic Acids Research, 2003, 31, 4091-4098.	14.5	185
2	Structure of transfer RNAs: similarity and variability. Wiley Interdisciplinary Reviews RNA, 2012, 3, 37-61.	6.4	139
3	Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. Lab on A Chip, 2009, 9, 1412.	6.0	102
4	Crystal structure of 3WJ core revealing divalent ion-promoted thermostability and assembly of the Phi29 hexameric motor pRNA. Rna, 2013, 19, 1226-1237.	3.5	98
5	Crystal Structures of the Pyrococcus abyssi Sm Core and Its Complex with RNA. Journal of Biological Chemistry, 2003, 278, 1239-1247.	3.4	97
6	Structure of tetragonal hen egg-white lysozyme at 0.94â€Ã from crystals grown by the counter-diffusion method. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1119-1126.	2.5	86
7	The free yeast aspartyl-tRNA synthetase differs from the tRNAAsp-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. Journal of Molecular Biology, 2000, 299, 1313-1324.	4.2	67
8	Structural insights into protein-only RNase P complexed with tRNA. Nature Communications, 2013, 4, 1353.	12.8	62
9	Crystal growth of proteins, nucleic acids, and viruses in gels. Progress in Biophysics and Molecular Biology, 2009, 101, 13-25.	2.9	60
10	Additives for the crystallization of proteins and nucleic acids. Journal of Crystal Growth, 1999, 196, 365-376.	1.5	56
11	From Macrofluidics to Microfluidics for the Crystallization of Biological Macromolecules. Crystal Growth and Design, 2007, 7, 2247-2250.	3.0	51
12	Crystallization of biological macromolecules using agarose gel. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1657-1659.	2.5	50
13	Crystal Structure of Human Mitochondrial Tyrosyl-tRNA Synthetase Reveals Common and Idiosyncratic Features. Structure, 2007, 15, 1505-1516.	3.3	50
14	Towards atomic resolution with crystals grown in gel: The case of thaumatin seen at room temperature. Proteins: Structure, Function and Bioinformatics, 2002, 48, 146-150.	2.6	45
15	A supersaturation wave of protein crystallization. Journal of Crystal Growth, 2001, 232, 149-155.	1.5	44
16	Structural Insights into Viral Determinants of Nematode Mediated Grapevine fanleaf virus Transmission. PLoS Pathogens, 2011, 7, e1002034.	4.7	44
17	PPR proteins shed a new light on RNase P biology. RNA Biology, 2013, 10, 1457-1468.	3.1	41
18	ChipX: A Novel Microfluidic Chip for Counter-Diffusion Crystallization of Biomolecules and in Situ Crystal Analysis at Room Temperature. Crystal Growth and Design, 2013, 13, 3333-3340.	3.0	39

#	Article	IF	CITATIONS
19	Small but large enough: structural properties of armless mitochondrial tRNAs from the nematode Romanomermis culicivorax. Nucleic Acids Research, 2018, 46, 9170-9180.	14.5	35
20	Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation. Nucleic Acids Research, 2007, 35, 1421-1431.	14.5	34
21	Thermodynamic properties distinguish human mitochondrial aspartyl-tRNA synthetase from bacterial homolog with same 3D architecture. Nucleic Acids Research, 2013, 41, 2698-2708.	14.5	32
22	Lessons from crystals grown in the Advanced Protein Crystallisation Facility for conventional crystallisation applied to structural biology. Biophysical Chemistry, 2005, 118, 102-112.	2.8	31
23	Loss of a Primordial Identity Element for a Mammalian Mitochondrial Aminoacylation System*. Journal of Biological Chemistry, 2006, 281, 15980-15986.	3.4	31
24	Neurodegenerative disease-associated mutants of a human mitochondrial aminoacyl-tRNA synthetase present individual molecular signatures. Scientific Reports, 2015, 5, 17332.	3.3	31
25	A sulfate pocket formed by three GoU pairs in the 0.97 â,,« resolution X-ray structure of a nonameric RNA. Rna, 1999, 5, 1384-1395.	3.5	30
26	Molecular basis for the differential interaction of plant mitochondrial VDAC proteins with tRNAs. Nucleic Acids Research, 2014, 42, 9937-9948.	14.5	30
27	Comparative analysis of space-grown and earth-grown crystals of an aminoacyl-tRNA synthetase: space-grown crystals are more useful for structural determination. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 645-652.	2.5	27
28	Tertiary network in mammalian mitochondrial tRNAAsp revealed by solution probing and phylogeny. Nucleic Acids Research, 2009, 37, 6881-6895.	14.5	27
29	Biophysical analysis of Arabidopsis protein-only RNase P alone and in complex with tRNA provides a refined model of tRNA binding. Journal of Biological Chemistry, 2017, 292, 13904-13913.	3.4	26
30	A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography. IUCrJ, 2019, 6, 454-464.	2.2	23
31	Growth kinetics, diffraction properties and effect of agarose on the stability of a novel crystal form of Thermus thermophilusaspartyl-tRNA synthetase-1. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 552-558.	2.5	20
32	Display of whole proteins on inner and outer surfaces of grapevine fanleaf virusâ€like particles. Plant Biotechnology Journal, 2016, 14, 2288-2299.	8.3	19
33	Crystallogenesis studies on yeast aspartyl-tRNA synthetase: use of phase diagram to improve crystal quality. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 149-156.	2.5	17
34	Crystallogenesis Trends of Free and Liganded Aminoacyl-tRNA Synthetases. Crystal Growth and Design, 2008, 8, 4297-4306.	3.0	17
35	Crystal Structure of Glutamyl-Queuosine tRNAAsp Synthetase Complexed with l-Glutamate: Structural Elements Mediating tRNA-Independent Activation of Glutamate and Glutamylation of tRNAAsp Anticodon. Journal of Molecular Biology, 2008, 381, 1224-1237.	4.2	17
36	Biocrystallography: Past, present, future. HFSP Journal, 2010, 4, 109-121.	2.5	17

3

#	Article	IF	Citations
37	Peculiar inhibition of human mitochondrial aspartyl-tRNA synthetaseby adenylate analogs. Biochimie, 2009, 91, 596-603.	2.6	16
38	Transfer RNA: From pioneering crystallographic studies to contemporary tRNA biology. Archives of Biochemistry and Biophysics, 2016, 602, 95-105.	3.0	14
39	Strategies for the crystallization of viruses: Using phase diagrams and gels to produce 3D crystals of Grapevine fanleaf virus. Journal of Structural Biology, 2011, 174, 344-351.	2.8	12
40	Crystal Structure of the Archaeal Asparagine Synthetase: Interrelation with Aspartyl-tRNA and Asparaginyl-tRNA Synthetases. Journal of Molecular Biology, 2011, 412, 437-452.	4.2	12
41	Exploiting Protein Engineering and Crystal Polymorphism for Successful X-ray Structure Determination. Crystal Growth and Design, 2011, 11, 4334-4343.	3.0	12
42	Re-designed N-terminus enhances expression, solubility and crystallizability of mitochondrial protein. Protein Engineering, Design and Selection, 2012, 25, 473-481.	2.1	12
43	Predicting Protein Crystallizability and Nucleation. Protein and Peptide Letters, 2012, 19, 725-731.	0.9	10
44	Mechanistic and Structural Studies of Protein-Only RNase P Compared to Ribonucleoproteins Reveal the Two Faces of the Same Enzymatic Activity. Biomolecules, 2016, 6, 30.	4.0	10
45	Structural basis of nanobody recognition of grapevine fanleaf virus and of virus resistance loss. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10848-10855.	7.1	10
46	Agarose gel facilitates enzyme crystal soaking with a ligand analog. Journal of Applied Crystallography, 2009, 42, 279-283.	4.5	8
47	Combining crystallogenesis methods to produce diffraction-quality crystals of a psychrophilic tRNA-maturation enzyme. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 747-753.	0.8	8
48	Tyrosyl-tRNA synthetase: the first crystallization of a human mitochondrial aminoacyl-tRNA synthetase. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 338-341.	0.7	7
49	Adaptation of the Romanomermis culicivorax CCA-Adding Enzyme to Miniaturized Armless tRNA Substrates. International Journal of Molecular Sciences, 2020, 21, 9047.	4.1	6
50	Disorder Can Exist inside Well-Diffracting Crystals. Crystal Growth and Design, 2007, 7, 2195-2197.	3.0	5
51	Monitoring the Production of High Diffraction-Quality Crystals of Two Enzymes in Real Time Using In Situ Dynamic Light Scattering. Crystals, 2020, 10, 65.	2.2	3
52	Structural Analysis of RNA by Small-Angle X-ray Scattering. Methods in Molecular Biology, 2020, 2113, 189-215.	0.9	3
53	Crystallization and preliminary X-ray characterization of the atypical glutaminyl-tRNA synthetase fromDeinococcus radiodurans. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 2361-2363.	2.5	2
54	Translation in Mammalian Mitochondria: Order and Disorder Linked to tRNAs and Aminoacyl-tRNA Synthetases., 2013,, 55-83.		2

#	Article	IF	CITATIONS
55	Crystallization and crystallographic analysis of anArabidopsisnuclear proteinaceous RNase P. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1372-1377.	0.8	2
56	CCA-addition in the cold: Structural characterization of the psychrophilic CCA-adding enzyme from the permafrost bacterium Planococcus halocryophilus. Computational and Structural Biotechnology Journal, 2021, 19, 5845-5855.	4.1	2
57	Crystallization and Structural Determination of an Enzyme:Substrate Complex by Serial Crystallography in a Versatile Microfluidic Chip. Journal of Visualized Experiments, 2021, , .	0.3	O