Xinzhong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6590356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of hydrogen permeation stability at high temperatures for Pd/Nb30Ti35Co35/Pd composite membranes by HfN intermediate layer. Journal of Membrane Science, 2022, 643, 120062.	4.1	5
2	Structure and properties of niobium carbide coated vanadium composite membranes for high temperature hydrogen separation. Journal of Alloys and Compounds, 2022, 900, 163530.	2.8	8
3	Tailoring the hydrogen transport properties of highly permeable Nb51W5Ti23Ni21 alloy membrane by Pd substitution. International Journal of Hydrogen Energy, 2022, 47, 6734-6744.	3.8	7
4	Substantial enhancement of hydrogen permeability of Mo2C/V composite membranes by ion beam sputtering. Journal of Membrane Science, 2022, 647, 120312.	4.1	3
5	Improvement of mechanical properties in micro-alloying Al-Si-Mg-Zn cast alloy. Materials Letters, 2021, 283, 128810.	1.3	4
6	The optimized composition and strong sustainability of hydrogen permeation of Nb30Ti35Co35 eutectic alloy membrane after 5Âat%Fe substitution. International Journal of Hydrogen Energy, 2021, 46, 13038-13043.	3.8	4
7	Improving hydrogen permeability and sustainability of Nb30Ti35Co35 eutectic alloy membrane by substituting Co using Fe. International Journal of Hydrogen Energy, 2020, 45, 30720-30730.	3.8	9
8	Hydrogen transport through the V-Cr-Al alloys: Hydrogen solution, permeation and thermal-stability. Separation and Purification Technology, 2020, 240, 116654.	3.9	9
9	Degradation of Pd/Nb30Ti35Co35/Pd hydrogen permeable membrane: A numerical description. Journal of Membrane Science, 2020, 601, 117922.	4.1	17
10	Analysis of W/Mo alloying on hydrogen permeation performance of dual phase Nb-Ti-Ni alloys based on hydrogen chemical potentials. Journal of Membrane Science, 2019, 584, 290-299.	4.1	21
11	Development of Nb35Mo5Ti30Ni30 alloy membrane for hydrogen separation applications. Journal of Membrane Science, 2018, 553, 171-179.	4.1	28
12	"Modified―Liquid–Liquid Displacement Porometry and Its Applications in Pd-Based Composite Membranes. Membranes, 2018, 8, 29.	1.4	6
13	Anisotropic layered Bi2Te3-In2Te3 composites: control of interface density for tuning of thermoelectric properties. Scientific Reports, 2017, 7, 43611.	1.6	18
14	Highly sulfur-tolerant Pd composite membranes with a protective layer of MoS ₂ /l̂3-alumina. Journal of Materials Chemistry A, 2017, 5, 8892-8896.	5.2	6
15	Design of (Nb, Mo)40Ti30Ni30 alloy membranes for combined enhancement of hydrogen permeability and embrittlement resistance. Scientific Reports, 2017, 7, 209.	1.6	17
16	V-Cr-Cu dual-phase alloy membranes for hydrogen separation: An excellent combination of ductility, hydrogen permeability and embrittlement resistance. Journal of Membrane Science, 2017, 524, 354-361.	4.1	21
17	Hydrogen transport behavior of as-cast, cold rolled and annealed Nb40Ti30Co30 alloy membranes. Journal of Membrane Science, 2016, 514, 294-304.	4.1	24
18	Detachment of secondary dendrite arm in a directionally solidified Sn-Ni peritectic alloy under deceleration growth condition. Scientific Reports, 2016, 6, 27682.	1.6	4

XINZHONG LI

#	Article	IF	CITATIONS
19	Microstructure dependent hydrogen permeability in eutectic Nb30Ti35Co35. International Journal of Hydrogen Energy, 2016, 41, 13086-13092.	3.8	16
20	On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy. Scientific Reports, 2016, 6, 24315.	1.6	5
21	On migration of primary/peritectic interface during interrupted directional solidification of Sn-Ni peritectic alloy. Scientific Reports, 2016, 6, 24512.	1.6	8
22	Effect of growth rate on microstructures and microhardness in directionally solidified Ti–47Al–1.0W–0.5Si alloy. Journal of Materials Research, 2016, 31, 618-626.	1.2	3
23	Composition-dependent phase substitution in directionally solidified Sn-22at.%Ni peritectic alloy. Journal of Materials Science, 2016, 51, 1512-1521.	1.7	14
24	Changes in microstructure, ductility and hydrogen permeability of Nb–(Ti, Hf)Ni alloy membranes by the substitution of Ti by Hf. Journal of Membrane Science, 2015, 484, 47-56.	4.1	23
25	Substantial enhancement of hydrogen permeability and embrittlement resistance of Nb30Ti25Hf10Co35 eutectic alloy membranes by directional solidification. Journal of Membrane Science, 2015, 496, 165-173.	4.1	15
26	Microstructural stability and its effect on hydrogen permeability in equiaxed and directionally solidified eutectic Nb 30 Ti 35 Co 35 alloys. International Journal of Hydrogen Energy, 2015, 40, 9026-9031.	3.8	15
27	Controllable 3D morphology and growth mechanism of quasicrystalline phase in directionally solidified Al–Mn–Be alloy. Journal of Materials Research, 2014, 29, 2547-2555.	1.2	8
28	Faceted–nonfaceted growth transition and 3-D morphological evolution of primary Al ₆ Mn microcrystals in directionally solidified Al–3 at.% Mn alloy. Journal of Materials Research, 2014, 29, 1256-1263.	1.2	18
29	Hydrogen permeation behavior of Nb30Ti35Ni35â^'xCox (xÂ=Â0…35) alloys containing high fractions of eutectic. International Journal of Hydrogen Energy, 2014, 39, 9366-9374.	3.8	18
30	Design of hydrogen permeable Nb–Ni–Ti alloys by correlating the microstructures, solidification paths and hydrogen permeability. International Journal of Hydrogen Energy, 2014, 39, 3505-3516.	3.8	40
31	Local melting/solidification during peritectic solidification in a steep temperature gradient: analysis of a directionally solidified Al–25at%Ni. Applied Physics A: Materials Science and Processing, 2014, 116, 1821-1831.	1.1	9
32	Nb–HfCo alloys with pronounced high hydrogen permeability: A new family of metallic hydrogen permeation membranes. International Journal of Hydrogen Energy, 2014, 39, 8385-8389.	3.8	16
33	Influence of initial solid–liquid interface morphology on further microstructure evolution during directional solidification. Applied Physics A: Materials Science and Processing, 2013, 110, 443-451.	1.1	6
34	Effect of peritectic reaction on the migration of secondary dendrite arms in the presence of tertiary dendrites: analysis of a directionally solidified Sn–36Âat.%Ni peritectic alloy. Journal of Materials Science, 2013, 48, 2608-2617.	1.7	3
35	Prediction of the solidification path of Al-4.37Cu-27.02Mg ternary eutectic alloy with a unified microsegregation model coupled with Thermo-Calc. International Journal of Materials Research, 2013, 104, 244-254.	0.1	10
36	Secondary dendrite arm migration caused by temperature gradient zone melting in the directionally solidified Sn–40 at.% Mn peritectic alloy. Journal of Materials Research, 2013, 28, 1196-1202.	1.2	3

XINZHONG LI

#	Article	IF	CITATIONS
37	Primary dendrite distribution in directionally solidified Sn–36 at.% Ni peritectic alloy. Journal of Materials Research, 2013, 28, 740-746.	1.2	10
38	Isothermal Peritectic Coupled Growth in Directionally Solidified Cu-20ÂwtÂpct Sn Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4219-4223.	1.1	4
39	Directional Solidification of Ti6Al4V Ingots with an Electromagnetic Cold Crucible by Adjusting the Meniscus. ISIJ International, 2012, 52, 1296-1300.	0.6	4
40	Effect of peritectic reaction on dendrite coarsening in directionally solidified Sn–36Âat.%Ni alloy. Journal of Materials Science, 2012, 47, 6108-6117.	1.7	20
41	A simple model for lamellar peritectic coupled growth with peritectic reaction. Science in China Series G: Physics, Mechanics and Astronomy, 2007, 50, 442-450.	0.2	4
42	Well-aligned in situ composites in directionally solidified Fe–Ni peritectic system. Applied Physics Letters, 2006, 89, 231918.	1.5	19