Cedric Dicko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/659009/publications.pdf

Version: 2024-02-01

430874 454955 34 914 18 30 citations h-index g-index papers 34 34 34 1162 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Supercritical Carbon Dioxide Impregnation of Gold Nanoparticles Demonstrates a New Route for the Fabrication of Hybrid Silk Materials. Insects, 2022, 13, 18.	2.2	2
2	Site-Specific Introduction of Negative Charges on the Protein Surface for Improving Global Functions of Recombinant Fetal Hemoglobin. Frontiers in Molecular Biosciences, 2021, 8, 649007.	3.5	2
3	Conductive and enzyme-like silk fibers for soft sensing application. Biosensors and Bioelectronics, 2020, 150, 111859.	10.1	9
4	3D Structure and Mechanics of Silk Sponge Scaffolds Is Governed by Larger Pore Sizes. Frontiers in Materials, 2020, 7, .	2.4	8
5	NUrFâ€"Optimization of in situ UVâ€"vis and fluorescence and autonomous characterization techniques with small-angle neutron scattering instrumentation. Review of Scientific Instruments, 2020, 91, 075111.	1.3	2
6	Structural Diversity of Native Major Ampullate, Minor Ampullate, Cylindriform, and Flagelliform Silk Proteins in Solution. Biomacromolecules, 2020, 21, 3387-3393.	5.4	5
7	Manganese oxide functionalized silk fibers for enzyme mimic application. Reactive and Functional Polymers, 2020, 151, 104565.	4.1	3
8	Sonication enhances the stability of MnO2 nanoparticles on silk film template for enzyme mimic application. Ultrasonics Sonochemistry, 2020, 64, 105011.	8.2	14
9	Ag–Polymer Nanocomposites for Capture, Detection, and Destruction of Bacteria. ACS Applied Nano Materials, 2019, 2, 1655-1663.	5.0	27
10	Immobilisation of \hat{l}^2 -galactosidase within a lipid sponge phase: structure, stability and kinetics characterisation. Nanoscale, 2019, 11, 21291-21301.	5.6	16
11	The effect of fatty acid binding in the acid isomerizations of albumin investigated with a continuous acidification method. Colloids and Surfaces B: Biointerfaces, 2018, 168, 109-116.	5.0	3
12	Enhanced extraction of flavonoids from Odontonema strictum leaves with antioxidant activity using supercritical carbon dioxide fluid combined with ethanol. Journal of Supercritical Fluids, 2018, 131, 66-71.	3.2	43
13	Time-Dependent pH Scanning of the Acid-Induced Unfolding of Human Serum Albumin Reveals Stabilization of the Native Form by Palmitic Acid Binding. Journal of Physical Chemistry B, 2017, 121, 4388-4399.	2.6	20
14	Cellulase cross-linked enzyme aggregates (CLEA) activities can be modulated and enhanced by precipitant selection. Journal of Chemical Technology and Biotechnology, 2017, 92, 1645-1649.	3.2	19
15	Rapid fabrication and optimization of silk fibers supported and stabilized MnO2 catalysts. Fibers and Polymers, 2017, 18, 1660-1670.	2.1	6
16	Fabrication and Optimization of Stable, Optically Transparent, and Reusable pH-Responsive Silk Membranes. International Journal of Molecular Sciences, 2016, 17, 1897.	4.1	0
17	Structural Response of Human Serum Albumin to Oxidation: Biological Buffer to Local Formation of Hypochlorite. Journal of Physical Chemistry B, 2016, 120, 12261-12271.	2.6	13
18	Differential scanning fluorimetry illuminates silk feedstock stability and processability. Soft Matter, 2016, 12, 255-262.	2.7	9

#	Article	IF	CITATION
19	Dimerization of Terminal Domains in Spiders Silk Proteins Is Controlled by Electrostatic Anisotropy and Modulated by Hydrophobic Patches. ACS Biomaterials Science and Engineering, 2015, 1, 363-371.	5.2	22
20	Characterization and assembly of a GFPâ€ŧagged cylindriform silk into hexameric complexes. Biopolymers, 2014, 101, 378-390.	2.4	4
21	Combined SAXS/UV–vis/Raman as a Diagnostic and Structure Resolving Tool in Materials and Life Sciences Applications. Journal of Physical Chemistry B, 2014, 118, 2264-2273.	2.6	23
22	The silkmoth cocoon as humidity trap and waterproof barrier. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2013, 164, 645-652.	1.8	41
23	Behavior of silk protein at the air–water interface. Soft Matter, 2012, 8, 9705.	2.7	35
24	Distinct structural and optical regimes in natural silk spinning. Biopolymers, 2012, 97, 368-373.	2.4	18
25	A novel marine silk. Die Naturwissenschaften, 2012, 99, 3-10.	1.6	26
26	Small angle neutron scattering of native and reconstituted silk fibroin. Soft Matter, 2010, 6, 4389.	2.7	51
27	Structural Disorder in Silk Proteins Reveals the Emergence of Elastomericity. Biomacromolecules, 2008, 9, 216-221.	5.4	48
28	Breaking the 200 nm Limit for Routine Flow Linear Dichroism Measurements Using UV Synchrotron Radiation. Biophysical Journal, 2008, 95, 5974-5977.	0.5	24
29	βâ€Silks: Enhancing and Controlling Aggregation. Advances in Protein Chemistry, 2006, 73, 17-53.	4.4	40
30	Conformational polymorphism, stability and aggregation in spider dragline silks proteins. International Journal of Biological Macromolecules, 2005, 36, 215-224.	7.5	22
31	Spider Silk Protein Refolding Is Controlled by Changing pH. Biomacromolecules, 2004, 5, 704-710.	5.4	142
32	Structural Conformation of Spidroin in Solution:Â A Synchrotron Radiation Circular Dichroism Study. Biomacromolecules, 2004, 5, 758-767.	5.4	57
33	Secondary Structures and Conformational Changes in Flagelliform, Cylindrical, Major, and Minor Ampullate Silk Proteins. Temperature and Concentration Effects. Biomacromolecules, 2004, 5, 2105-2115.	5.4	64
34	Transition to a β-Sheet-Rich Structure in Spidroin in Vitro: The Effects of pH and Cationsâ€. Biochemistry, 2004, 43, 14080-14087.	2.5	96