Theophilos Ioannides

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6590079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea–nitrate combustion method. Applied Catalysis A: General, 2003, 244, 155-167.	2.2	542
2	A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catalysis Today, 2002, 75, 157-167.	2.2	532
3	VOC oxidation over MnOx–CeO2 catalysts prepared by a combustion method. Applied Catalysis B: Environmental, 2008, 84, 303-312.	10.8	460
4	Influence of the preparation method on the performance of CuO–CeO2 catalysts for the selective oxidation of CO. Applied Catalysis B: Environmental, 2005, 56, 87-93.	10.8	382
5	Manganese–lanthanum oxides modified with silver for the catalytic combustion of methane. Journal of Catalysis, 2004, 227, 282-296.	3.1	350
6	Evaluation of Î ³ -MnO2as a VOC Removal Catalyst: Comparison with a Noble Metal Catalyst. Journal of Catalysis, 1998, 178, 214-225.	3.1	299
7	VOC oxidation over CuO–CeO2 catalysts prepared by a combustion method. Applied Catalysis B: Environmental, 2009, 89, 295-302.	10.8	273
8	CuO–CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catalysis Letters, 2001, 73, 33-40.	1.4	256
9	Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts. Applied Catalysis B: Environmental, 1997, 13, 175-184.	10.8	253
10	Effect of synthesis parameters on catalytic properties of CuO-CeO2. Applied Catalysis B: Environmental, 2006, 67, 1-11.	10.8	247
11	Combined steam reforming of methanol over Cu–Mn spinel oxide catalysts. Journal of Catalysis, 2007, 251, 7-20.	3.1	191
12	Charge Transfer in Metal Catalysts Supported on Doped TiO2: A Theoretical Approach Based on Metal–Semiconductor Contact Theory. Journal of Catalysis, 1996, 161, 560-569.	3.1	162
13	Performance of doped Pt/TiO2 (W6+) catalysts for combustion of volatile organic compounds (VOCs). Applied Catalysis B: Environmental, 1998, 15, 75-92.	10.8	158
14	Water–gas shift activity of doped Pt/CeO2 catalysts. Chemical Engineering Journal, 2007, 134, 16-22.	6.6	153
15	Catalytic performance and characterization of Au/doped-ceria catalysts for the preferential CO oxidation reaction. Journal of Catalysis, 2008, 256, 237-247.	3.1	145
16	Thermodynamic analysis of ethanol processors for fuel cell applications. Journal of Power Sources, 2001, 92, 17-25.	4.0	115
17	Complete oxidation of ethanol over alkali-promoted Pt/Al2O3 catalysts. Applied Catalysis B: Environmental, 2006, 65, 62-69.	10.8	106
18	A comparative study of ceria-supported gold and copper oxide catalysts for preferential CO oxidation reaction. Chemical Engineering Journal, 2006, 124, 41-45.	6.6	102

#	Article	IF	CITATIONS
19	Effect of dopants on the performance of CuO–CeO2 catalysts in methanol steam reforming. Applied Catalysis B: Environmental, 2007, 69, 226-234.	10.8	102
20	Steam reforming of methanol over copper–manganese spinel oxide catalysts. Catalysis Communications, 2005, 6, 497-501.	1.6	99
21	In situ combustion synthesis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production and purification of hydrogen. Applied Catalysis B: Environmental, 2006, 66, 168-174.	10.8	96
22	Production of hydrogen via combined steam reforming of methanol over CuO–CeO2 catalysts. Catalysis Communications, 2004, 5, 231-235.	1.6	95
23	CO-free hydrogen production over Au/CeO2–Fe2O3 catalysts: Part 1. Impact of the support composition on the performance for the preferential CO oxidation reaction. Applied Catalysis B: Environmental, 2011, 101, 256-265.	10.8	88
24	Effect of additives on the WGS activity of combustion synthesized CuO/CeO2 catalysts. Catalysis Communications, 2007, 8, 101-106.	1.6	81
25	Catalytic isobutane dehydrogenation in a dense silica membrane reactor. Journal of Membrane Science, 1993, 77, 207-220.	4.1	68
26	Preferential CO oxidation in H2-rich gas mixtures over Au/doped ceria catalysts. Catalysis Today, 2008, 138, 239-243.	2.2	65
27	Application of Sorbents for Oil Spill Cleanup Focusing on Natural-Based Modified Materials: A Review. Molecules, 2020, 25, 4522.	1.7	65
28	High-quality laser-assisted biomass-based turbostratic graphene for high-performance supercapacitors. Carbon, 2021, 172, 750-761.	5.4	65
29	Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts. Applied Catalysis B: Environmental, 2009, 88, 490-496.	10.8	61
30	Influence of the Carrier on the Interaction of H2 and CO with Supported Rh. Journal of Catalysis, 1993, 140, 353-369.	3.1	60
31	VOC removal: investigation of ethylacetate oxidation over supported Pt catalysts. Catalysis Today, 1999, 54, 81-92.	2.2	59
32	Catalytic incineration of volatile organic compounds Present in industrial waste streams. Applied Thermal Engineering, 1998, 18, 1005-1012.	3.0	56
33	Biomass-derived graphene-like materials as active electrodes for supercapacitor applications: A critical review. Chemical Engineering Journal, 2022, 446, 137191.	6.6	53
34	Reforming methanol to electricity in a high temperature PEM fuel cell. Applied Catalysis B: Environmental, 2009, 90, 628-632.	10.8	52
35	Highly active copper catalyst for low-temperature water-gas shift reaction prepared via a Cu-Mn spinel oxide precursor. Applied Catalysis A: General, 2013, 451, 184-191.	2.2	50
36	The Interaction of Benzene and Toluene with Rh Dispersed on SiO2, Al2O3, and TiO2 Carriers. Journal of Catalysis, 1993, 143, 175-186.	3.1	45

#	Article	IF	CITATIONS
37	Hydrogen production from methanol over combustion-synthesized noble metal/ceria catalysts. Chemical Engineering Journal, 2009, 154, 274-280.	6.6	45
38	Application of a dense silica membrane reactor in the reactions of dry reforming and partial oxidation of methane. Catalysis Letters, 1996, 36, 165-169.	1.4	44
39	In situ hydrogen utilization in an internal reforming methanol fuel cell. International Journal of Hydrogen Energy, 2014, 39, 18103-18108.	3.8	40
40	TPD and TPSR study of CO interaction with CuO–CeO2 catalysts. Journal of Molecular Catalysis A, 2008, 296, 47-53.	4.8	39
41	Development of an internal reforming alcohol fuel cell: Concept, challenges and opportunities. Chemical Engineering Journal, 2011, 176-177, 95-101.	6.6	36
42	Enhancing water vapor permeability in mixed matrix polypropylene membranes through carbon nanotubes dispersion. Journal of Membrane Science, 2017, 524, 576-584.	4.1	36
43	New Pyridinium Type Poly(Ionic Liquids) as Membranes for CO2 Separation. Polymers, 2018, 10, 912.	2.0	35
44	Adsorption and reaction of CO on CuO–CeO2 catalysts prepared by the combustion method. Catalysis Letters, 2007, 116, 15-22.	1.4	33
45	CO tolerance of Pt and Rh catalysts: effect of CO in the gas-phase oxidation of H2 over Pt and Rh supported catalysts. Applied Catalysis B: Environmental, 2005, 56, 77-86.	10.8	31
46	Performance evaluation of a proof-of-concept 70ÂW internal reforming methanol fuel cell system. Journal of Power Sources, 2016, 307, 875-882.	4.0	31
47	Deep insight into Zr/Fe combination for successful Pt/CeO ₂ /Al ₂ O ₃ WGS catalyst doping. Catalysis Science and Technology, 2017, 7, 1556-1564.	2.1	30
48	Study of CO2 adsorption on a commercial CuO/ZnO/Al2O3 catalyst. Catalysis Today, 2020, 357, 495-502.	2.2	29
49	Could an efficient WGS catalyst be useful in the CO-PrOx reaction?. Applied Catalysis B: Environmental, 2014, 150-151, 554-563.	10.8	28
50	CO Oxidation over Rh Dispersed on SiO2, Al2O3 and TiO2: Kinetic Study and Oscillatory Behavior. Journal of Catalysis, 1995, 156, 265-272.	3.1	27
51	Pyridinium based Poly(Ionic Liquids) membranes with exceptional high water vapor permeability and selectivity. Separation and Purification Technology, 2020, 251, 117412.	3.9	27
52	Development of a novel heat-integrated wall reactor for the partial oxidation of methane to synthesis gas. Catalysis Today, 1998, 46, 71-81.	2.2	26
53	Efficiency of a solid polymer fuel cell operating on ethanol. Journal of Power Sources, 2000, 91, 150-156.	4.0	26
54	Novel doubly-promoted catalysts for the lean NOx reduction by H2+CO: Pd(K)/Al2O3–(TiO2). Applied Catalysis B: Environmental, 2006, 68, 59-67.	10.8	26

#	Article	IF	CITATIONS
55	Effects of Altervalent Cation Doping of TiO2 on H2, and CO Adsorption on Supported Rh. Journal of Catalysis, 1994, 145, 479-490.	3.1	25
56	Catalytic partial oxidation of methane in a novel heat-integrated wall reactor. Catalysis Letters, 1997, 47, 183-188.	1.4	23
57	CuMnOx catalysts for internal reforming methanol fuel cells: Application aspects. International Journal of Hydrogen Energy, 2012, 37, 16739-16747.	3.8	23
58	Insights on the effective incorporation of a foam-based methanol reformer in a high temperature polymer electrolyte membrane fuel cell. Journal of Power Sources, 2015, 296, 335-343.	4.0	23
59	Kinetic model of the partial oxidation of methane to synthesis gas over Ru/TiO2 catalyst. AICHE Journal, 2000, 46, 1260-1270.	1.8	21
60	PROX reaction over CuO–CeO2 catalyst with reformate gas containing methanol. Catalysis Communications, 2008, 9, 1656-1660.	1.6	21
61	Kinetics of CO and H2 oxidation over CuO–CeO2 and CuO catalysts. Chemical Engineering Journal, 2011, 176-177, 14-21.	6.6	19
62	Transfer of metals in the liquids of electronic cigarettes. Inhalation Toxicology, 2020, 32, 240-248.	0.8	19
63	Effects of Altervalent Cation Doping of TiO2 on Kinetic Parameters of CO Hydrogenation and CO Oxidation on Supported Rh. Journal of Catalysis, 1994, 145, 491-500.	3.1	18
64	Complete Oxidation of Methane over Palladium Supported on Alumina Modified with Calcium, Lanthanum, and Cerium Ions. Journal of Natural Gas Chemistry, 2007, 16, 342-348.	1.8	17
65	Influence of carrier doping on catalytic performance of titanium dioxide supported platinum. Applied Catalysis, 1989, 46, 297-312.	1.1	16
66	Synthesis of Cobalt-Based Nanomaterials from Organic Precursors. , 0, , .		16
67	Metal-doped carbons from polyurea-crosslinked alginate aerogel beads. Materials Advances, 2021, 2, 2684-2699.	2.6	16
68	Laser-assisted transformation of a phenol-based resin to high quality graphene-like powder for supercapacitor applications. Chemical Engineering Journal, 2022, 430, 133179.	6.6	16
69	Synthesis and characterization of poly(ethylene oxide) based copolymer membranes for efficient gas/vapor separation: Effect of PEO content and chain length. Journal of Membrane Science, 2021, 632, 119353.	4.1	15
70	Alcohol reforming on cobalt-based catalysts prepared from organic salt precursors. International Journal of Hydrogen Energy, 2012, 37, 16375-16381.	3.8	13
71	Hydrogen-rich gas generation from alcohols over cobalt-based catalysts for fuel cell feeding. Fuel Processing Technology, 2016, 148, 341-349.	3.7	13
72	Synthesis of Imidazolium based PILs and Investigation of Their Blend Membranes for Gas Separation. Membranes, 2019, 9, 164.	1.4	12

#	Article	IF	CITATIONS
73	Influence of Carrier Doping on the Interaction of Benzene and Toluene with Supported Rhodium. Journal of Catalysis, 1995, 152, 331-340.	3.1	11
74	Synthesis of transparent silica aerogels using tetraalkylammonium fluoride catalysts. Journal of Sol-Gel Science and Technology, 2009, 49, 347-354.	1.1	11
75	Effects of dopants on performance of metal crystallites 3. Influence on kinetic parameters in CO/H2 and CO/H2 reactions. Journal of Catalysis, 1989, 116, 590-594.	3.1	10
76	Effects of degree of mixing on quantitative interpretation of TPD spectra. Journal of Catalysis, 1989, 120, 157-169.	3.1	10
77	Hydrogen Formation via Steam Reforming of Ethanol Over Cu/ZnO Catalyst Modified with Nickel, Cobalt and Manganese. Catalysis Letters, 2009, 128, 443-448.	1.4	10
78	Isotopic transient study of methanol decomposition over noble metal/ceria catalysts. Catalysis Communications, 2009, 10, 682-686.	1.6	9
79	Intrinsic Activity of MnOx-CeO2 Catalysts in Ethanol Oxidation. Catalysts, 2017, 7, 339.	1.6	8
80	Synthesis and properties of Polymeric ionic liquids (PILs) bearing hydrophilic PEO groups: Evaluation of gas and water vapor separation performance. Separation and Purification Technology, 2022, 280, 119790.	3.9	8
81	Comment on: "Nm-sized metal particles on a semiconductor surface, Schottky model, etc.―by V.P. Zhdanov [Surf. Sci. 512 (2002) L331–L334]. Surface Science, 2003, 530, 216-218.	0.8	7
82	Dimethyl Ether Hydrolysis over WO3/γ-Al2O3 Supported Catalysts. Catalysts, 2022, 12, 396.	1.6	7
83	Kinetic behaviour of the Ru/TiO2 catalyst in the reaction of partial oxidation of methane. Studies in Surface Science and Catalysis, 1998, , 801-806.	1.5	6
84	Non Noble Metal Electrocatalysts for High Temperature PEM Fuel Cells. ECS Transactions, 2009, 25, 181-189.	0.3	6
85	Steam reforming of methanol over cobalt catalysts: Effect of cobalt oxidation state. International Journal of Hydrogen Energy, 2015, 40, 5251-5255.	3.8	6
86	Synthesis gas formation by catalytic partial oxidation of methane in a heat- integrated wall reactor. Studies in Surface Science and Catalysis, 1998, 119, 411-416.	1.5	5
87	Methanol Reforming over Cobalt Catalysts Prepared from Fumarate Precursors: TPD Investigation. Catalysts, 2016, 6, 33.	1.6	5
88	Electrochemical Performance of Sn/C Nanocomposites Interphased with Varying Mixtures of Ethyl-, Dimethyl- and Vinylene-Carbonate. Journal of the Electrochemical Society, 2016, 163, A1013-A1019.	1.3	5
89	Modification of the catalytic properties of supported noble metal catalysts by carrier doping. Chemical Engineering and Technology, 1995, 18, 25-32.	0.9	4
90	Carbon Membranes Prepared from Poly (Furfuryl Alcohol–Furfural) Precursors: Effect of FeCl3 Additive. Journal of Carbon Research, 2020, 6, 53.	1.4	4

#	Article	IF	CITATIONS
91	Flame Retardant Nano-Structured Fillers from Huntite/Hydromagnesite Minerals. Nanomaterials, 2022, 12, 2433.	1.9	4
92	Steam reforming of acetol and hydroxyacetaldehyde over natural calcite catalysts. Catalysis Today, 2020, 355, 781-787.	2.2	3
93	Dimethyl Ether Oxidation over Copper Ferrite Catalysts. Catalysts, 2022, 12, 604.	1.6	3
94	Effect of Graphitization Catalyst on Structure and Performance of Carbon Membranes. Procedia Engineering, 2012, 44, 1361-1362.	1.2	0
95	Water Vapor Transport Enhancement Through Isotactic Polypropylene by Incorporating Multiwalled Carbon Nanotubes. Powder Metallurgy and Metal Ceramics, 2015, 53, 634-642.	0.4	0
96	Preface for SI: Catalysis for Energy and Environmental Applications. Catalysis Today, 2020, 355, 645-646.	2.2	0