## Cristiano L Dias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6590012/publications.pdf Version: 2024-02-01



CRISTIANO L DIAS

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Using all-atom simulations in explicit solvent to study aggregation of amphipathic peptides into amyloid-like fibrils. Journal of Molecular Liquids, 2022, 347, 118283.                                                                                                 | 2.3 | 15        |
| 2  | Effects of Ions and Small Compounds on the Structure of AÎ <sup>2</sup> 42 Monomers. Journal of Physical Chemistry B, 2021, 125, 1085-1097.                                                                                                                             | 1.2 | 3         |
| 3  | Methane Clathrate Formation is Catalyzed and Kinetically Inhibited by the Same Molecule: Two Facets of Methanol. Journal of Physical Chemistry B, 2021, 125, 4162-4168.                                                                                                 | 1.2 | 6         |
| 4  | Binding Mechanisms of Amyloid-like Peptides to Lipid Bilayers and Effects of Divalent Cations. ACS Chemical Neuroscience, 2021, 12, 2027-2035.                                                                                                                          | 1.7 | 19        |
| 5  | Role of Cholesterol on Binding of Amyloid Fibrils to Lipid Bilayers. Journal of Physical Chemistry B,<br>2020, 124, 3036-3042.                                                                                                                                          | 1.2 | 21        |
| 6  | Individual and combined effects of urea and trimethylamine N-oxide (TMAO) on protein structures.<br>Journal of Molecular Liquids, 2019, 293, 111443.                                                                                                                    | 2.3 | 8         |
| 7  | Magnesium Regulates the Circadian Oscillator in Cyanobacteria. Journal of Biological Rhythms, 2019,<br>34, 380-390.                                                                                                                                                     | 1.4 | 21        |
| 8  | GRADE: A code to determine clathrate hydrate structures. Computer Physics Communications, 2019, 244, 385-391.                                                                                                                                                           | 3.0 | 31        |
| 9  | Thermodynamic Stability of Polar and Nonpolar Amyloid Fibrils. Journal of Chemical Theory and Computation, 2019, 15, 3868-3874.                                                                                                                                         | 2.3 | 16        |
| 10 | Thermodynamic properties of amyloid fibrils: A simple model of peptide aggregation. Fluid Phase<br>Equilibria, 2019, 489, 104-110.                                                                                                                                      | 1.4 | 1         |
| 11 | Effects of Trimethylamine- <i>N</i> -oxide (TMAO) on Hydrophobic and Charged Interactions. Journal of<br>Physical Chemistry B, 2018, 122, 5557-5566.                                                                                                                    | 1.2 | 19        |
| 12 | Cooperative fibril model: Native, amyloid-like fibril and unfolded states of proteins. Physica A:<br>Statistical Mechanics and Its Applications, 2018, 511, 154-165.                                                                                                    | 1.2 | 4         |
| 13 | Thermodynamic properties of amyloid fibrils in equilibrium. Biophysical Chemistry, 2017, 231, 155-160.                                                                                                                                                                  | 1.5 | 11        |
| 14 | Molecular interactions accounting for protein denaturation by urea. Journal of Molecular Liquids, 2017, 228, 168-175.                                                                                                                                                   | 2.3 | 27        |
| 15 | Effects of Trimethylamine- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt; <mml:mi>N</mml:mi> </mml:math> -oxide on the Conformation of Peptides and its<br>Implications for Proteins. Physical Review Letters, 2017, 119, 108102. | 2.9 | 46        |
| 16 | Thermodynamics of Al̂² <sub>16–21</sub> dissociation from a fibril: Enthalpy, entropy, and volumetric properties. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1963-1972.                                                                                | 1.5 | 6         |
| 17 | Role of side-chain interactions on the formation ofα-helices in model peptides. Physical Review E, 2015, 91, 032710.                                                                                                                                                    | 0.8 | 4         |
| 18 | Hydration of non-polar anti-parallel β-sheets. Journal of Chemical Physics, 2014, 140, 165101.                                                                                                                                                                          | 1.2 | 4         |

CRISTIANO L DIAS

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Exploring the free energy landscape of a model β-hairpin peptide and its isoform. Proteins: Structure,<br>Function and Bioinformatics, 2014, 82, 2394-2402.                              | 1.5  | 2         |
| 20 | Properties of the Lennard-Jones dimeric fluid in two dimensions: An integral equation study. Journal of Chemical Physics, 2014, 140, 094703.                                             | 1.2  | 11        |
| 21 | Driving $\hat{I}^2$ -Strands into Fibrils. Journal of Physical Chemistry B, 2014, 118, 10830-10836.                                                                                      | 1.2  | 15        |
| 22 | Pressure-Dependent Properties of Elementary Hydrophobic Interactions: Ramifications for Activation Properties of Protein Folding. Journal of Physical Chemistry B, 2014, 118, 7488-7509. | 1.2  | 49        |
| 23 | Hydrophobic interactions and hydrogen bonds in β-sheet formation. Journal of Chemical Physics, 2013, 139, 115103.                                                                        | 1.2  | 44        |
| 24 | Unifying Microscopic Mechanism for Pressure and Cold Denaturations of Proteins. Physical Review Letters, 2012, 109, 048104.                                                              | 2.9  | 58        |
| 25 | Hydrophobic interactions in the formation of secondary structures in small peptides. Physical Review E, 2011, 84, 041931.                                                                | 0.8  | 20        |
| 26 | Hydrophobicity within the three-dimensional Mercedes-Benz model: Potential of mean force. Journal of Chemical Physics, 2011, 134, 065106.                                                | 1.2  | 52        |
| 27 | Static charges cannot drive a continuous flow of water molecules through a carbon nanotube.<br>Nature Nanotechnology, 2010, 5, 555-557.                                                  | 15.6 | 71        |
| 28 | The hydrophobic effect and its role in cold denaturation. Cryobiology, 2010, 60, 91-99.                                                                                                  | 0.3  | 164       |
| 29 | Reply to the comment by Graziano on "The hydrophobic effect and its role in cold denaturationâ€.<br>Cryobiology, 2010, 60, 356-357.                                                      | 0.3  | 1         |
| 30 | Nucleation of cracks in a brittle sheet. Physical Review E, 2009, 80, 066109.                                                                                                            | 0.8  | 6         |
| 31 | Three-dimensional "Mercedes-Benz―model for water. Journal of Chemical Physics, 2009, 131, 054505.                                                                                        | 1.2  | 53        |
| 32 | Microscopic Mechanism for Cold Denaturation. Physical Review Letters, 2008, 100, 118101.                                                                                                 | 2.9  | 114       |
| 33 | Designable structures are easy to unfold. Physical Review E, 2006, 74, 042902.                                                                                                           | 0.8  | 4         |
| 34 | Scaling in force spectroscopy of macromolecules. Physical Review E, 2005, 72, 011918.                                                                                                    | 0.8  | 17        |
| 35 | Comment on "Nonstationarity Induced by Long-Time Noise Correlations in the Langevin Equationâ€.<br>Physical Review Letters, 2001, 86, 5839-5839.                                         | 2.9  | 7         |