Cristiano L Dias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6590012/publications.pdf

Version: 2024-02-01

516215 433756 35 950 16 31 citations h-index g-index papers 35 35 35 1015 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The hydrophobic effect and its role in cold denaturation. Cryobiology, 2010, 60, 91-99.	0.3	164
2	Microscopic Mechanism for Cold Denaturation. Physical Review Letters, 2008, 100, 118101.	2.9	114
3	Static charges cannot drive a continuous flow of water molecules through a carbon nanotube. Nature Nanotechnology, 2010, 5, 555-557.	15.6	71
4	Unifying Microscopic Mechanism for Pressure and Cold Denaturations of Proteins. Physical Review Letters, 2012, 109, 048104.	2.9	58
5	Three-dimensional "Mercedes-Benz―model for water. Journal of Chemical Physics, 2009, 131, 054505.	1.2	53
6	Hydrophobicity within the three-dimensional Mercedes-Benz model: Potential of mean force. Journal of Chemical Physics, 2011, 134, 065106.	1.2	52
7	Pressure-Dependent Properties of Elementary Hydrophobic Interactions: Ramifications for Activation Properties of Protein Folding. Journal of Physical Chemistry B, 2014, 118, 7488-7509.	1.2	49
8	Effects of Trimethylamine- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>N</mml:mi></mml:math> -oxide on the Conformation of Peptides and its Implications for Proteins. Physical Review Letters, 2017, 119, 108102.	2.9	46
9	Hydrophobic interactions and hydrogen bonds in \hat{l}^2 -sheet formation. Journal of Chemical Physics, 2013, 139, 115103.	1.2	44
10	GRADE: A code to determine clathrate hydrate structures. Computer Physics Communications, 2019, 244, 385-391.	3.0	31
11	Molecular interactions accounting for protein denaturation by urea. Journal of Molecular Liquids, 2017, 228, 168-175.	2.3	27
12	Magnesium Regulates the Circadian Oscillator in Cyanobacteria. Journal of Biological Rhythms, 2019, 34, 380-390.	1.4	21
13	Role of Cholesterol on Binding of Amyloid Fibrils to Lipid Bilayers. Journal of Physical Chemistry B, 2020, 124, 3036-3042.	1.2	21
14	Hydrophobic interactions in the formation of secondary structures in small peptides. Physical Review E, 2011, 84, 041931.	0.8	20
15	Effects of Trimethylamine- <i>N</i> -oxide (TMAO) on Hydrophobic and Charged Interactions. Journal of Physical Chemistry B, 2018, 122, 5557-5566.	1.2	19
16	Binding Mechanisms of Amyloid-like Peptides to Lipid Bilayers and Effects of Divalent Cations. ACS Chemical Neuroscience, 2021, 12, 2027-2035.	1.7	19
17	Scaling in force spectroscopy of macromolecules. Physical Review E, 2005, 72, 011918.	0.8	17
18	Thermodynamic Stability of Polar and Nonpolar Amyloid Fibrils. Journal of Chemical Theory and Computation, 2019, 15, 3868-3874.	2.3	16

#	Article	IF	CITATIONS
19	Driving Î ² -Strands into Fibrils. Journal of Physical Chemistry B, 2014, 118, 10830-10836.	1.2	15
20	Using all-atom simulations in explicit solvent to study aggregation of amphipathic peptides into amyloid-like fibrils. Journal of Molecular Liquids, 2022, 347, 118283.	2.3	15
21	Properties of the Lennard-Jones dimeric fluid in two dimensions: An integral equation study. Journal of Chemical Physics, 2014, 140, 094703.	1.2	11
22	Thermodynamic properties of amyloid fibrils in equilibrium. Biophysical Chemistry, 2017, 231, 155-160.	1.5	11
23	Individual and combined effects of urea and trimethylamine N-oxide (TMAO) on protein structures. Journal of Molecular Liquids, 2019, 293, 111443.	2.3	8
24	Comment on "Nonstationarity Induced by Long-Time Noise Correlations in the Langevin Equation― Physical Review Letters, 2001, 86, 5839-5839.	2.9	7
25	Nucleation of cracks in a brittle sheet. Physical Review E, 2009, 80, 066109.	0.8	6
26	Thermodynamics of $A\hat{1}^2$ < sub> $16\hat{a}$ \in "21 < /sub> dissociation from a fibril: Enthalpy, entropy, and volumetric properties. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1963-1972.	1.5	6
27	Methane Clathrate Formation is Catalyzed and Kinetically Inhibited by the Same Molecule: Two Facets of Methanol. Journal of Physical Chemistry B, 2021, 125, 4162-4168.	1.2	6
28	Designable structures are easy to unfold. Physical Review E, 2006, 74, 042902.	0.8	4
29	Hydration of non-polar anti-parallel β-sheets. Journal of Chemical Physics, 2014, 140, 165101.	1.2	4
30	Role of side-chain interactions on the formation of \hat{l}_{\pm} -helices in model peptides. Physical Review E, 2015, 91, 032710.	0.8	4
31	Cooperative fibril model: Native, amyloid-like fibril and unfolded states of proteins. Physica A: Statistical Mechanics and Its Applications, 2018, 511, 154-165.	1.2	4
32	Effects of lons and Small Compounds on the Structure of Al̂242 Monomers. Journal of Physical Chemistry B, 2021, 125, 1085-1097.	1.2	3
33	Exploring the free energy landscape of a model \hat{l}^2 -hairpin peptide and its isoform. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2394-2402.	1.5	2
34	Reply to the comment by Graziano on "The hydrophobic effect and its role in cold denaturation― Cryobiology, 2010, 60, 356-357.	0.3	1
35	Thermodynamic properties of amyloid fibrils: A simple model of peptide aggregation. Fluid Phase Equilibria, 2019, 489, 104-110.	1.4	1