
Francisco J Pulido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6589545/publications.pdf Version: 2024-02-01

EPANCISCO L PULLOO

#	Article	IF	CITATIONS
1	Allylsilanes and Vinylsilanes from Silylcupration of Carbonâ^'Carbon Multiple Bonds:Â Scope and Synthetic Applications. Accounts of Chemical Research, 2004, 37, 817-825.	15.6	101
2	The silyl-cupration and stannyl-cupration of allenes. Tetrahedron, 1989, 45, 413-424.	1.9	90
3	The stannyl–cupration of acetylenes and the reaction of the intermediate cuprates with electrophiles as a synthesis of substituted vinylstannanes. Journal of the Chemical Society Chemical Communications, 1992, , 351-353.	2.0	49
4	Multicomponent Prins Cyclization from Allylsilyl Alcohols Leading to Dioxaspirodecanes. Organic Letters, 2013, 15, 5234-5237.	4.6	45
5	Intramolecular Cyclization oftert-Butyldiphenylallylsilane Units and Carbonyl Groups:Â Allylsilane Terminated Cyclization versus the Ene Reaction. Journal of Organic Chemistry, 2001, 66, 7723-7728.	3.2	42
6	The syntheses of allylsilanes and vinylsilanes by silyl-cupration of allenes. Journal of the Chemical Society Chemical Communications, 1986, , 1010.	2.0	40
7	Stannyl-cupration of acetylenes and the reaction of the intermediate cuprates with electrophiles as a synthesis of substituted vinylstannanes. Journal of the Chemical Society Perkin Transactions 1, 1993, , 1657-1662.	0.9	39
8	Synthesis of vinylsilanes by silyl-cupration of acetylenes using tert-butyldiphenylsilyl-cuprate reagents. Journal of the Chemical Society Perkin Transactions 1, 1995, , 1525-1532.	0.9	38
9	New findings on the regiochemistry of the silylcupration of allene. Tetrahedron Letters, 1994, 35, 8881-8882.	1.4	36
10	Synthesis of Azepane Derivatives by Silyl-aza-Prins Cyclization of Allylsilyl Amines: Influence of the Catalyst in the Outcome of the Reaction. Organic Letters, 2016, 18, 1972-1975.	4.6	36
11	Ring-formation from allyl- and vinylstannanes initiated by treatment with butyl-lithium. Tetrahedron Letters, 1992, 33, 5841-5842.	1.4	34
12	Stannylcupration of Acetylenes Followed by Reaction with Epoxides:Â A Novel Annulation Strategy for the Synthesis of Cyclobutenes. Journal of Organic Chemistry, 1998, 63, 7531-7533.	3.2	34
13	Synthesis of allylstannanes and vinylstannanes by the stannyl-cupration of allenes. Journal of the Chemical Society Perkin Transactions 1, 1992, , 327-331.	0.9	33
14	Competitive Silyl–Prins Cyclization versus Tandem Sakurai–Prins Cyclization: An Interesting Substitution Effect. Chemistry - A European Journal, 2014, 20, 14112-14119.	3.3	33
15	The Peterson Olefination Using the tert-Butyldiphenylsilyl Group: Stereoselective Synthesis of Di- and Trisubstituted Alkenes. Synthesis, 2000, 2000, 1223-1228.	2.3	30
16	The reaction of tert-butyldiphenylsilylcuprates with allenes. Journal of the Chemical Society Perkin Transactions 1, 1991, , 2811-2816.	0.9	29
17	Allylstannanes and vinylstannanes from stannylcupration of C–C multiple bonds. Recent advances and applications in organic synthesis. Chemical Society Reviews, 2005, 34, 913.	38.1	29
18	Silylcupration of allenes followed by reaction with enones. A new strategy for the synthesis of methylenecyclopentanols. Tetrahedron Letters, 1999, 40, 6649-6652.	1.4	28

FRANCISCO J PULIDO

#	Article	IF	CITATIONS
19	Acid-Catalyzed Cyclization of Epoxyallylsilanes. An Unusual Rearrangement Cyclization Process. Organic Letters, 2003, 5, 4045-4048.	4.6	27
20	Spiro-Cyclopropanation from Oxoallylsilanes. Journal of the American Chemical Society, 2005, 127, 8022-8023.	13.7	25
21	Silylcuprates from Allene and Their Reaction with α,β-Unsaturatedd Nitriles and Imines. Synthesis of Silylated Oxo Compounds Leading to Cyclopentane and Cycloheptane Ring Formation. Journal of Organic Chemistry, 2005, 70, 6876-6883.	3.2	24
22	The synthesis of allylstannanes and, vinylstannanes by the stannyl-cupration of allenes. Journal of the Chemical Society Chemical Communications, 1990, , 1030-1031.	2.0	23
23	From Silylated Trishomoallylic Alcohols to Dioxaspiroundecanes or Oxocanes: Catalyst and Substitution Influence. Journal of Organic Chemistry, 2016, 81, 2704-2712.	3.2	21
24	The regiochemistry of the stannylcupration of allenes: synthesis of allylstannanes using the lower order cuprate (Bu3Sn)CuCNLi. Tetrahedron Letters, 2004, 45, 3765-3767.	1.4	19
25	A tandem allylsilane–vinylsilane difunctionalization by silylcupration of allene followed by reaction with α,β-unsaturated nitriles. Chemical Communications, 2001, , 1606-1607.	4.1	17
26	Remote Stereocontrol in Carbonyl Additions Promoted by Vinylstannanes. Angewandte Chemie - International Edition, 2001, 40, 2101-2103.	13.8	17
27	Addition of Organometallic Compounds to Tin-Containing Cyclic Ketones. Remote Stereocontrol Induced by the Stannyl Group. Journal of the American Chemical Society, 2003, 125, 12049-12056.	13.7	15
28	Intramolecular Ene Reaction of Epoxyallylsilanes:Â Synthesis of Allyl- and Vinylsilane-Functionalized Cyclohexanols. Journal of Organic Chemistry, 2005, 70, 10747-10752.	3.2	15
29	Seven-Membered Ring Formation from Cyclopropanated Oxo- and Epoxyallylsilanes. Journal of Organic Chemistry, 2011, 76, 5850-5855.	3.2	14
30	Efficiency of Acid―and Mercury atalyzed Cyclization Reactions in the Synthesis of Tetrahydrofurans from AllyIsilyl Alcohols. European Journal of Organic Chemistry, 2012, 2012, 5350-5356.	2.4	12
31	Pd-catalyzed cross-coupling of allylsilane-vinylcopper species with aryl and vinyl halides: the first total synthesis of (â^')-nomadone. Tetrahedron, 2009, 65, 5535-5540.	1.9	10
32	Regioselective γ-Alkylation of the tert-Butyldiphenylsilylallyl Anion: Synthesis of (E)-tert-Butyldiphenylsilylalkenes. Synthesis, 1996, 1996, 42-44.	2.3	8
33	Peterson olefination from \hat{l}_{\pm} -silyl aldehydes. Nature Protocols, 2006, 1, 2068-2074.	12.0	8
34	Synthesis of 3â€Methylenecyclohexanâ€1â€ols by Lewis Acid Catalyzed Cyclization of (Epoxy–allyl)silanes. European Journal of Organic Chemistry, 2010, 2010, 1307-1313.	2.4	8
35	One-pot multicoupling reaction of silylcopper reagents, organolithium compounds and α,β-unsaturated nitriles. Organic and Biomolecular Chemistry, 2011, 9, 1454.	2.8	8
36	Allylsilane-Vinylcopper Reagents: Palladium-Mediated Coupling with Alkenyl Halides. Synthesis and Photochemical [2 + 2] Cyclization of (±)-Ipsdienol. Synlett, 2001, 2001, 0824-0826.	1.8	7

FRANCISCO J PULIDO

#	Article	IF	CITATIONS
37	Allylsilanes in the synthesis of three to seven membered rings: the silylcuprate strategy. Beilstein Journal of Organic Chemistry, 2007, 3, 16.	2.2	7
38	Synthesis of Silyloxyvinylstannanes from BHT Ester Enolates and Stannyllithium Reagents. Copper(I)-Mediated Coupling with Alkenyl Halides. Synlett, 2001, 2001, 0827-0829.	1.8	6
39	Efficient access to polysubstituted tetrahydrofurans by electrophilic cyclization of vinylsilyl alcohols. RSC Advances, 2015, 5, 49541-49551.	3.6	5
40	Oneâ€Pot Synthesis of 2,7â€Dioxabicyclo[2.2.1]heptanes from Oxoallylsilanes. European Journal of Organic Chemistry, 2011, 2011, 6974-6979.	2.4	3
41	Synthesis of Polysubstituted Tetrahydropyrans by Stereoselective Hydroalkoxylation of Silyl Alkenols: En Route to Tetrahydropyranyl Marine Analogues. Marine Drugs, 2018, 16, 421.	4.6	3
42	Allene: As Small in Size as Versatile in Synthesis. A General Scope of its Usefulness as a C 3 -Synthon for Carbocyclic Annulations. Synthesis, 2004, 2004, 779-785.	2.3	2
43	Isoxazoles as Latent Siloxybutadienes: An Easy Entry to Polyfunctionalized Benzene Systems via Diels-Alder Reaction with Acetylenes. Synthesis, 2004, 2004, 401-404.	2.3	1
44	Addition of Organometallic Compounds to Tin-Containing Cyclic Ketones. Remote Stereocontrol Induced by the Stannyl Group ChemInform, 2004, 35, no.	0.0	0
45	Acid-Catalyzed Cyclization of Epoxyallylsilanes. An Unusual Rearrangement Cyclization Process ChemInform, 2004, 35, no.	0.0	0
46	The Regiochemistry of the Stannylcupration of Allenes: Synthesis of Allylstannanes Using the Lower Order Cuprate (Bu3Sn)CuCNLi ChemInform, 2004, 35, no.	0.0	0
47	Allylsilanes and Vinylsilanes from Silylcupration of Carbon?Carbon Multiple Bonds: Scope and Synthetic Applications ChemInform, 2005, 36, no.	0.0	0
48	Spiro-Cyclopropanation from Oxoallylsilanes ChemInform, 2005, 36, no.	0.0	0