
## **Daniel Ballesteros**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6588622/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Does oxygen affect ageing mechanisms of <i>Pinus densiflora</i> seeds? A matter of cytoplasmic physical state. Journal of Experimental Botany, 2022, 73, 2631-2649.                                                                                     | 2.4 | 18        |
| 2  | Impact of drying and cooling rate on the survival of the desiccation-sensitive wheat pollen. Plant Cell Reports, 2022, 41, 447-461.                                                                                                                     | 2.8 | 7         |
| 3  | Bryophyte Spores Tolerate High Desiccation Levels and Exposure to Cryogenic Temperatures but<br>Contain Storage Lipids and Chlorophyll: Understanding the Essential Traits Needed for the Creation<br>of Bryophyte Spore Banks. Plants, 2022, 11, 1262. | 1.6 | 2         |
| 4  | Cryopreservation of Seeds and Seed Embryos in Orthodox-, Intermediate-, and Recalcitrant-Seeded Species. Methods in Molecular Biology, 2021, 2180, 663-682.                                                                                             | 0.4 | 12        |
| 5  | Cryopreservation of Fern Spores and Pollen. Methods in Molecular Biology, 2021, 2180, 623-637.                                                                                                                                                          | 0.4 | 6         |
| 6  | Plant Diversity Conservation Challenges and Prospects—The Perspective of Botanic Gardens and the<br>Millennium Seed Bank. Plants, 2021, 10, 2371.                                                                                                       | 1.6 | 26        |
| 7  | Cryobiotechnologies: Tools for expanding long-term ex situ conservation to all plant species.<br>Biological Conservation, 2020, 250, 108736.                                                                                                            | 1.9 | 62        |
| 8  | Dry architecture: towards the understanding of the variation of longevity in desiccation-tolerant germplasm. Seed Science Research, 2020, 30, 142-155.                                                                                                  | 0.8 | 64        |
| 9  | The Cryobiotechnology of Oaks: An Integration of Approaches for the Long-Term Ex Situ Conservation of Quercus Species. Forests, 2020, 11, 1281.                                                                                                         | 0.9 | 11        |
| 10 | Desiccation Tolerance in Chlorophyllous Fern Spores: Are Ecophysiological Features Related to Environmental Conditions?. Frontiers in Plant Science, 2019, 10, 1130.                                                                                    | 1.7 | 9         |
| 11 | Solid-State Biology and Seed Longevity: A Mechanical Analysis of Glasses in Pea and Soybean Embryonic<br>Axes. Frontiers in Plant Science, 2019, 10, 920.                                                                                               | 1.7 | 26        |
| 12 | Assessing Extreme Seed Longevity: The Value of Historic Botanical Collections to Modern Research.<br>Frontiers in Plant Science, 2019, 10, 1181.                                                                                                        | 1.7 | 6         |
| 13 | Survival and growth of embryo axes of temperate trees after two decades of cryo-storage.<br>Cryobiology, 2019, 88, 110-113.                                                                                                                             | 0.3 | 11        |
| 14 | Longevity of Preserved Germplasm: The Temperature Dependency of Aging Reactions in Glassy Matrices of Dried Fern Spores. Plant and Cell Physiology, 2019, 60, 376-392.                                                                                  | 1.5 | 26        |
| 15 | Photo-oxidation modulates green fern spore longevity during dry storage. Plant Cell, Tissue and<br>Organ Culture, 2018, 133, 165-175.                                                                                                                   | 1.2 | 7         |
| 16 | Fern Conservation: Spore, Gametophyte, and Sporophyte Ex Situ Storage, In Vitro Culture, and Cryopreservation. , 2018, , 227-249.                                                                                                                       |     | 13        |
| 17 | Desiccation Tolerance in Ferns: From theÂUnicellular Spore to theÂMulti-tissular Sporophyte. , 2018, ,<br>401-426.                                                                                                                                      |     | 11        |
| 18 | Evaluation of short-lived seeds' cryopreservation as alternative to conventional seed banking<br>Cryobiology, 2018, 85, 140-141.                                                                                                                        | 0.3 | 8         |

DANIEL BALLESTEROS

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Desiccation tolerance and the hydration window for the cryopreservation of woody species' pollen.<br>Cryobiology, 2018, 85, 139.                                                            | 0.3 | 4         |
| 20 | Cryobiotechnological approaches for the preservation of oak (Quercus Sp) embryonic axes<br>Cryobiology, 2018, 85, 140.                                                                      | 0.3 | 1         |
| 21 | Contribution of embryo size and age to the successful cryopreservation of aesculus species<br>Cryobiology, 2018, 85, 140.                                                                   | 0.3 | 3         |
| 22 | Assessing the limits of liquid nitrogen storage: fern spores as unicellular model to understant and improve longevity at cryogenic conditions Cryobiology, 2018, 85, 160.                   | 0.3 | 3         |
| 23 | Variation of desiccation tolerance and longevity in fern spores. Journal of Plant Physiology, 2017, 211, 53-62.                                                                             | 1.6 | 25        |
| 24 | Survival and genetic stability of shoot tips of Hedeoma todsenii R.S.Irving after long-term<br>cryostorage. In Vitro Cellular and Developmental Biology - Plant, 2017, 53, 328-338.         | 0.9 | 15        |
| 25 | Cryobiotechnology of tropical seeds – scale, scope and hope. Acta Horticulturae, 2017, , 37-48.                                                                                             | 0.1 | 10        |
| 26 | Plant species with extremely small populations (PSESP) in China: AÂseed and spore biology perspective.<br>Plant Diversity, 2016, 38, 209-220.                                               | 1.8 | 42        |
| 27 | Uneven drying of zygotic embryos and embryonic axes of recalcitrant seeds: Challenges and considerations for cryopreservation. Cryobiology, 2014, 69, 100-109.                              | 0.3 | 24        |
| 28 | Effects of temperature and desiccation on ex situ conservation of nongreen fern spores. American<br>Journal of Botany, 2012, 99, 721-729.                                                   | 0.8 | 32        |
| 29 | Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems. Plant Journal, 2011, 68, 607-619. | 2.8 | 92        |
| 30 | Conservation of Fern Spores. , 2011, , 165-172.                                                                                                                                             |     | 8         |
| 31 | Inhibition of mitochondrial function by efavirenz increases lipid content in hepatic cells. Hepatology, 2010, 52, 115-125.                                                                  | 3.6 | 128       |
| 32 | Structural mechanics of seed deterioration: Standing the test of time. Plant Science, 2010, 179, 565-573.                                                                                   | 1.7 | 140       |
| 33 | Water properties in fern spores: sorption characteristics relating to water affinity, glassy states, and storage stability. Journal of Experimental Botany, 2007, 58, 1185-1196.            | 2.4 | 35        |
| 34 | Calorimetric properties of water and triacylglycerols in fern spores relating to storage at cryogenic temperatures. Cryobiology, 2007, 55, 1-9.                                             | 0.3 | 33        |