
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6588597/publications.pdf Version: 2024-02-01

VEZENC HE

#	Article	IF	CITATIONS
1	Controllable construction of hierarchically porous carbon composite of nanosheet network for advanced dual-carbon potassium-ion capacitors. Journal of Colloid and Interface Science, 2022, 621, 169-179.	5.0	9
2	Enhanced performance of mesoporous NiCo ₂ S ₄ nanosheets fibreâ€shaped electrode for supercapacitor. Micro and Nano Letters, 2021, 16, 263-267.	0.6	4
3	Fabrication and Degradation Properties of Nanoporous Copper with Tunable Pores by Dealloying Amorphous Ti-Cu Alloys with Minor Co Addition. Journal of Materials Engineering and Performance, 2021, 30, 1759-1767.	1.2	8
4	Construction of layered C@MnNiCo–OH/Ni3S2 core–shell heterostructure with enhanced electrochemical performance for asymmetric supercapacitor. Journal of Materials Science: Materials in Electronics, 2021, 32, 11145-11157.	1.1	5
5	Constructing Co(OH)F Nanorods@NiCoâ€LDH Nanocages Derived from ZIFâ€67 for Highâ€Performance Supercapacitors. Advanced Materials Interfaces, 2021, 8, 2100642.	1.9	91
6	Carbon-coated NiMn layered double hydroxides/Ni3S2 nanocomposite for high performance supercapacitors. Journal of Energy Storage, 2021, 41, 103003.	3.9	72
7	Facile synthesis of hierarchical NiCoP nanowires@NiCoP nanosheets core–shell nanoarrays for high-performance asymmetrical supercapacitor. Journal of Materials Science, 2020, 55, 1157-1169.	1.7	31
8	Facile synthesis of NiCoP nanosheets on carbon cloth and their application as positive electrode material in asymmetric supercapacitor. Ionics, 2020, 26, 355-366.	1.2	31
9	3D core-shell pistil-like MnCo2O4.5/polyaniline nanocomposites as high performance supercapacitor electrodes. Composite Interfaces, 2020, 27, 631-644.	1.3	9
10	Hierarchical NiS@CoS with Controllable Coreâ€ S hell Structure by Twoâ€ S tep Strategy for Supercapacitor Electrodes. Advanced Materials Interfaces, 2020, 7, 1901618.	1.9	98
11	Self-supported NiSe@Ni3S2 core-shell composite on Ni foam for a high-performance asymmetric supercapacitor. Ionics, 2020, 26, 3997-4007.	1.2	19
12	Hierarchical Nickel–Cobalt Phosphide/Phosphate/Carbon Nanosheets for High-Performance Supercapacitors. ACS Applied Nano Materials, 2020, 3, 11945-11954.	2.4	130
13	Flake-like nickel/cobalt metal-organic framework as high-performance electrodes for supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 16260-16268.	1.1	12
14	Flexible wire-shaped symmetric supercapacitors with Zn–Co layered double hydroxide nanosheets grown on Ag-coated cotton wire. Journal of Materials Science, 2020, 55, 16683-16696.	1.7	12
15	Formation of hollow-cubic Ni(OH)2/CuS2 nanocomposite via sacrificial template method for high performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 10489-10498.	1.1	5
16	Rubik's cube-like Ni3S4/CuS2 nanocomposite for high-performance supercapacitors. Journal of Alloys and Compounds, 2020, 847, 156312.	2.8	65
17	One‣tep Synthesis of Nanostructured CoS ₂ Grown on Titanium Carbide MXene for Highâ€Performance Asymmetrical Supercapacitors. Advanced Materials Interfaces, 2020, 7, 1901659.	1.9	77
18	Nickel/cobalt bimetallic metal-organic frameworks ultrathin nanosheets with enhanced performance for supercapacitors. Journal of Alloys and Compounds, 2020, 825, 154069.	2.8	145

#	Article	IF	CITATIONS
19	Threeâ€dimensional nanoporous copper with tunable structure prepared by dealloying titanium–copper–cobalt metallic glasses for supercapacitors. Micro and Nano Letters, 2020, 15, 283-286.	0.6	8
20	Sustainable synthesis of N/S-doped porous carbon sheets derived from waste newspaper for high-performance asymmetric supercapacitor. Materials Research Express, 2019, 6, 095605.	0.8	9
21	Ultrathin Ni–Co LDH nanosheets grown on carbon fiber cloth via electrodeposition for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 13360-13371.	1.1	45
22	Hierarchical NiCo2S4@Ni3S2 core/shell nanorod arrays supported on carbon cloth for all-solid-state flexible asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 13462-13473.	1.1	7
23	Facile synthesis of CoNi2S4 nanoparticles grown on carbon fiber cloth for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2019, 30, 19077-19086.	1.1	23
24	Fabrication of nanoporous NiO@CoO composites by dealloying method as ultra-high capacitance electrodes. Journal of Materials Science: Materials in Electronics, 2019, 30, 20311-20319.	1.1	2
25	One-Step Hydrothermal Synthesis of CoNi ₂ S ₄ for Hybrid Supercapacitor Electrodes. Nano, 2019, 14, 1950088.	0.5	7
26	Self-supported 3D layered zinc/nickel metal-organic-framework with enhanced performance for supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 18101-18110.	1.1	45
27	Critical Analysis of an FeP Empirical Potential Employed to Study the Fracture of Metallic Glasses. Physical Review Letters, 2019, 122, 035501.	2.9	19
28	Atomic-level crystallization in selective laser melting fabricated Zr-based metallic glasses. Physical Chemistry Chemical Physics, 2019, 21, 12406-12413.	1.3	20
29	Nitrogen/Oxygen Coâ€Doped Hierarchically Porous Carbon for Highâ€Performance Potassium Storage. Chemistry - A European Journal, 2019, 25, 7359-7365.	1.7	59
30	Facile synthesis of N-doped activated carbon derived from cotton and CuCo2O4 nanoneedle arrays electrodes for all-solid-state asymmetric supercapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 9877-9887.	1.1	17
31	Synthesis of Ultrathin MnO2 Nanosheets/Bagasse Derived Porous Carbon Composite for Supercapacitor with High Performance. Journal of Electronic Materials, 2019, 48, 3026-3035.	1.0	14
32	Hydrothermal Synthesis of Ni-MOF Vulcanized Derivatives for High-Performance Supercapacitors. Nano, 2019, 14, 1950032.	0.5	22
33	High performance fiber-shaped all-solid-state symmetric supercapacitor based on mesoporous CuCo2S4 nanosheets. Journal of Materials Science: Materials in Electronics, 2019, 30, 667-676.	1.1	11
34	Effect of nickel (Ni) on the growth rate of Cu6Sn5 intermetallic compounds between Sn–Cu–Bi solder and Cu substrate. Journal of Materials Science: Materials in Electronics, 2019, 30, 2186-2191.	1.1	20
35	One-step hydrothermal synthesis of a CoS2@MoS2 nanocomposite for high-performance supercapacitors. Journal of Alloys and Compounds, 2018, 742, 844-851.	2.8	84
36	Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors. Journal of Materials Science, 2018, 53, 6807-6818.	1.7	193

#	Article	IF	CITATIONS
37	Facile synthesis of Cu1.96S nanoparticles for enhanced energy density in flexible all-solid-state asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 11187-11198.	1.1	9
38	CuCo2S4 nanotubes on carbon fiber papers for high-performance all-solid-state asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 8636-8648.	1.1	23
39	Ni3S4 supported on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 2525-2536.	1.1	39
40	Polyhedral ternary oxide FeCo2O4: A new electrode material for supercapacitors. Journal of Alloys and Compounds, 2018, 735, 1339-1343.	2.8	89
41	Facile Synthesis of Agâ€Decorated Ni ₃ S ₂ Nanosheets with 3D Bush Structure Grown on rGO and Its Application as Positive Electrode Material in Asymmetric Supercapacitor. Advanced Materials Interfaces, 2018, 5, 1700985.	1.9	96
42	Facile synthesis of nickel metal–organic framework derived hexagonal flaky NiO for supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 2477-2483.	1.1	24
43	All-solid-state asymmetric supercapacitor based on N-doped activated carbon derived from polyvinylidene fluoride and ZnCo2O4 nanosheet arrays. Journal of Materials Science: Materials in Electronics, 2018, 29, 2120-2130.	1.1	10
44	Synthesis of Cu2O by oxidation-assisted dealloying method for flexible all-solid-state asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 2080-2090.	1.1	19
45	ZnO@Ni–Co–S Core–Shell Nanorods-Decorated Carbon Fibers as Advanced Electrodes for High-Performance Supercapacitors. Nano, 2018, 13, 1850148.	0.5	6
46	Self-Supported Ni0.85Se Nanosheets Array on Carbon Fiber Cloth for a High-Performance Asymmetric Supercapacitor. Journal of Electronic Materials, 2018, 47, 7002-7010.	1.0	21
47	Activation properties of reticulate Ni3S2 electrode materials grown on nickel foam for high performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 20775-20782.	1.1	1
48	Effect of Silicon on the Microstructure and Performance of the New Binary Deep Eutectic Ti–Cu–Zr–Ni-Based Filler Metal. Metals, 2018, 8, 481.	1.0	1
49	Ag-rGO content dependence of the mechanical, conductive and anti-corrosion properties of copper matrix composites. Materials Research Express, 2018, 5, 096523.	0.8	4
50	Effects of Carbonization Temperature on Nature of Nanostructured Electrode Materials Derived from Fe-MOF for Supercapacitors. Electronic Materials Letters, 2018, 14, 548-555.	1.0	13
51	Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors. Journal of Colloid and Interface Science, 2018, 531, 83-90.	5.0	277
52	Facile synthesis of mesoporous ZnCo2O4 nanosheet arrays grown on rGO as binder-free electrode for high-performance asymmetric supercapacitor. Journal of Materials Science, 2018, 53, 16074-16085.	1.7	23
53	The effect of temperature on morphology and electrochemical properties of NiCo ₂ S ₄ by hydrothermal synthesis. Functional Materials Letters, 2018, 11, 1850063.	0.7	1
54	An Asymmetric Supercapacitor Based on Activated Porous Carbon Derived from Walnut Shells and NiCo ₂ O ₄ Nanoneedle Arrays Electrodes. Journal of Nanoscience and Nanotechnology, 2018, 18, 5600-5608.	0.9	24

#	Article	IF	CITATIONS
55	Polymorphic germanium films forming in slit nanopore. Computational Materials Science, 2017, 127, 187-187.	1.4	1
56	Graphene-like monolayer low-buckled honeycomb germanium film. Journal of Crystal Growth, 2017, 463, 187-193.	0.7	0
57	Influence of SnO2 Nanoparticles Addition on Microstructure, Thermal Analysis, and Interfacial IMC Growth of Sn1.0Ag0.7Cu Solder. Journal of Electronic Materials, 2017, 46, 4197-4205.	1.0	21
58	Microstructure of Al _{1.3} CrFeNi eutectic high entropy alloy and oxidation behavior at 1000 °C. Journal of Materials Research, 2017, 32, 2109-2116.	1.2	33
59	Facile synthesis of copper sulfides with different shapes for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 10720-10729.	1.1	10
60	One-step hydrothermal synthesis of Ni3S4@MoS2 nanosheet on carbon fiber paper as a binder-free anode for supercapacitor. Journal of Materials Science: Materials in Electronics, 2017, 28, 12747-12754.	1.1	43
61	Cobalt oxide composites derived from zeolitic imidazolate framework for high-performance supercapacitor electrode. Journal of Materials Science: Materials in Electronics, 2017, 28, 14019-14025.	1.1	24
62	Copper matrix composites enhanced by silver/reduced graphene oxide hybrids. Materials Letters, 2017, 196, 354-357.	1.3	45
63	Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials. Electrochimica Acta, 2017, 226, 69-78.	2.6	101
64	Mechanical enhancement of copper matrix composites with homogeneously dispersed graphene modified by silver nanoparticles. Journal of Alloys and Compounds, 2017, 729, 293-302.	2.8	62
65	Facile Construction of 3D Reduced Graphene Oxide Wrapped Ni ₃ S ₂ Nanoparticles on Ni Foam for Highâ€Performance Asymmetric Supercapacitor Electrodes. Particle and Particle Systems Characterization, 2017, 34, 1700196.	1.2	30
66	Oneâ€pot synthesis of flake Cu 1.81 S/C composite for highâ€performance supercapactiors electrodes. Micro and Nano Letters, 2017, 12, 87-89.	0.6	2
67	Wear behavior of in-situ TiC particles reinforced aluminum matrix composite. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 552-556.	0.4	1
68	Preparation and capacitance properties of Al-doped hierarchical TiO2 nanostructure by oxidation of Ti–8Al alloy. Journal of Materials Science: Materials in Electronics, 2017, 28, 13770-13779.	1.1	1
69	Structure Dependence of Fe o Hydroxides on Fe/Co Ratio and Their Application for Supercapacitors. Particle and Particle Systems Characterization, 2017, 34, 1600239.	1.2	37
70	Tensile mechanical properties of nano-layered copper/graphene composite. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87, 233-236.	1.3	34
71	Influence of Brazing Technology on the Microstructure and Properties of YG20C cemented carbide and 16Mn steel joints. Welding in the World, Le Soudage Dans Le Monde, 2016, 60, 1269-1275.	1.3	20
72	Effects of pouring temperature on interfacial reaction between Ti-47.5Al-2.5V-1Cr alloy and mold during centrifugal casting. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 1105-1108.	0.4	5

#	Article	IF	CITATIONS
73	Electrodeposition of Ni–Co double hydroxide composite nanosheets on Fe substrate for highâ€performance supercapacitor electrode. Micro and Nano Letters, 2016, 11, 837-839.	0.6	5
74	Co ₃ O ₄ nanocrystals derived from a zeolitic imidazolate framework on Ni foam as high-performance supercapacitor electrode material. RSC Advances, 2016, 6, 61803-61808.	1.7	18
75	Multilayer hexagonal silicon forming in slit nanopore. Scientific Reports, 2015, 5, 14792.	1.6	6
76	Wettability and Coalescence of Cu Droplets Subjected to Two-Wall Confinement. Scientific Reports, 2015, 5, 15190.	1.6	14
77	Layering transition in confined silicon. Nanoscale, 2014, 6, 4217.	2.8	14
78	Dewetting Properties of Metallic Liquid Film on Nanopillared Graphene. Scientific Reports, 2014, 4, 3938.	1.6	22
79	Liquid-liquid phase transition and structure inheritance in carbon films. Scientific Reports, 2014, 4, 3635.	1.6	23
80	Atomic insight into copper nanostructures nucleation on bending graphene. Physical Chemistry Chemical Physics, 2013, 15, 9163.	1.3	13
81	Wavelike deformation traveling on a carbon nanotube. Nanoscale, 2012, 4, 269-277.	2.8	2