
LÃ;zaro EustÃ;quio Pereira Peres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6588233/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Chimeric TGA Repressor Slows Down Fruit Maturation and Ripening in Tomato. Plant and Cell Physiology, 2022, 63, 120-134.	1.5	9
2	Pathways to de novo domestication of crop wild relatives. Plant Physiology, 2022, 188, 1746-1756.	2.3	27
3	Enhancing crop diversity for food security in the face of climate uncertainty. Plant Journal, 2022, 109, 402-414.	2.8	60
4	Reduced auxin signalling through the cyclophilin gene <i>DIAGEOTROPICA</i> impacts tomato fruit development and metabolism during ripening. Journal of Experimental Botany, 2022, 73, 4113-4128.	2.4	4
5	Increased branching independent of strigolactone in cytokinin oxidase 2-overexpressing tomato is mediated by reduced auxin transport. Molecular Horticulture, 2022, 2, .	2.3	10
6	The Genetic Complexity of Type-IV Trichome Development Reveals the Steps towards an Insect-Resistant Tomato. Plants, 2022, 11, 1309.	1.6	6
7	Auxin-driven ecophysiological diversification of leaves in domesticated tomato. Plant Physiology, 2022, 190, 113-126.	2.3	1
8	Beyond host specificity: the biotechnological exploitation of chitolectin from teratocytes of Toxoneuron nigriceps to control non-permissive hosts. Journal of Pest Science, 2021, 94, 713-727.	1.9	3
9	An Ethylene Over-Producing Mutant of Tomato (<i>Solanum lycopersicum</i>), Epinastic, Exhibits Tolerance to High Temperature Conditions. American Journal of Plant Sciences, 2021, 12, 487-497.	0.3	2
10	De novo domestication of wild species to create crops with increased resilience and nutritional value. Current Opinion in Plant Biology, 2021, 60, 102006.	3.5	64
11	The Lanata trichome mutation increases stomatal conductance and reduces leaf temperature in tomato. Journal of Plant Physiology, 2021, 260, 153413.	1.6	6
12	Moniliophthora perniciosa , the causal agent of witches' broom disease of cacao, interferes with cytokinin metabolism during infection of Micro‶om tomato and promotes symptom development. New Phytologist, 2021, 231, 365-381.	3.5	7
13	Introgression of the sesquiterpene biosynthesis from Solanum habrochaites to cultivated tomato offers insights into trichome morphology and arthropod resistance. Planta, 2021, 254, 11.	1.6	13
14	Attenuations of bacterial spot disease Xanthomonas euvesicatoria on tomato plants treated with biostimulants. Chemical and Biological Technologies in Agriculture, 2021, 8, .	1.9	7
15	Low pH-induced cell wall disturbances in Arabidopsis thaliana roots lead to a pattern-specific programmed cell death in the different root zones and arrested elongation in late elongation zone. Environmental and Experimental Botany, 2021, 190, 104596.	2.0	6
16	Ethylene Signaling Causing Tolerance of Arabidopsis thaliana Roots to Low pH Stress is Linked to Class III Peroxidase Activity. Journal of Plant Growth Regulation, 2021, 40, 116-125.	2.8	5
17	Control of waterâ€use efficiency by florigen. Plant, Cell and Environment, 2020, 43, 76-86.	2.8	6
18	Changes in flavonoid and carotenoid profiles alter volatile organic compounds in purple and orange cherry tomatoes obtained by allele introgression. Journal of the Science of Food and Agriculture, 2020, 100, 1662-1670.	1.7	27

#	Article	IF	CITATIONS
19	Combined releases of soil predatory mites and provisioning of free-living nematodes for the biological control of root-knot nematodes on â€~Micro Tom tomato'. Biological Control, 2020, 146, 104280.	1.4	13
20	Modulation of auxin signalling through <i>DIAGETROPICA</i> and <i>ENTIRE</i> differentially affects tomato plant growth via changes in photosynthetic and mitochondrial metabolism. Plant, Cell and Environment, 2019, 42, 448-465.	2.8	17
21	Tomato mottle mosaic virus in Brazil and its relationship with Tm-22 gene. European Journal of Plant Pathology, 2019, 155, 353-359.	0.8	14
22	A loss-of-function allele of a TAC1-like gene (SITAC1) located on tomato chromosome 10 is a candidate for the Erectoid leaf (Erl) mutation. Euphytica, 2019, 215, 1.	0.6	9
23	Citrus carotenoid isomerase gene characterization by complementation of the "Micro-Tom―tangerine mutant. Plant Cell Reports, 2019, 38, 623-636.	2.8	9
24	Solanum lycopersicum GOLDEN 2-LIKE 2 transcription factor affects fruit quality in a light- and auxin-dependent manner. PLoS ONE, 2019, 14, e0212224.	1.1	33
25	A new variety of purple tomato as a rich source of bioactive carotenoids and its potential health benefits. Heliyon, 2019, 5, e02831.	1.4	37
26	Capsaicinoids: Pungency beyond Capsicum. Trends in Plant Science, 2019, 24, 109-120.	4.3	108
27	Bundle sheath extensions affect leaf structural and physiological plasticity in response to irradiance. Plant, Cell and Environment, 2019, 42, 1575-1589.	2.8	14
28	Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated micro <scp>RNA</scp> â€controlled modules. New Phytologist, 2019, 221, 1328-1344.	3.5	61
29	SELF-PRUNING Acts Synergistically with DIAGEOTROPICA to Guide Auxin Responses and Proper Growth Form. Plant Physiology, 2018, 176, 2904-2916.	2.3	34
30	NO, hydrogen sulfide does not come first during tomato response to high salinity. Nitric Oxide - Biology and Chemistry, 2018, 76, 164-173.	1.2	64
31	Constitutive gibberellin response in grafted tomato modulates root-to-shoot signaling under drought stress. Journal of Plant Physiology, 2018, 221, 11-21.	1.6	39
32	Light, Ethylene and Auxin Signaling Interaction Regulates Carotenoid Biosynthesis During Tomato Fruit Ripening. Frontiers in Plant Science, 2018, 9, 1370.	1.7	84
33	De novo domestication of wild tomato using genome editing. Nature Biotechnology, 2018, 36, 1211-1216.	9.4	559
34	A novel cysteine-rich peptide regulates cell expansion in the tobacco pistil and influences its final size. Plant Science, 2018, 277, 55-67.	1.7	3
35	Understanding the genetic regulation of anthocyanin biosynthesis in plants – Tools for breeding purple varieties of fruits and vegetables. Phytochemistry, 2018, 153, 11-27.	1.4	140
36	Identification of a seed maturation protein gene from Coffea arabica (CaSMP) and analysis of its promoter activity in tomato. Plant Cell Reports, 2018, 37, 1257-1268.	2.8	3

#	Article	IF	CITATIONS
37	Shedding light on NO homeostasis: Light as a key regulator of glutathione and nitric oxide metabolisms during seedling deetiolation. Nitric Oxide - Biology and Chemistry, 2017, 68, 77-90.	1.2	18
38	Genetic and physiological characterization of three natural allelic variations affecting the organogenic capacity in tomato (Solanum lycopersicum cv. Micro-Tom). Plant Cell, Tissue and Organ Culture, 2017, 129, 89-103.	1.2	8
39	Gene expression analyses in tomato near isogenic lines provide evidence for ethylene and abscisic acid biosynthesis fine-tuning during arbuscular mycorrhiza development. Archives of Microbiology, 2017, 199, 787-798.	1.0	14
40	Loss of type-IV glandular trichomes is a heterochronic trait in tomato and can be reverted by promoting juvenility. Plant Science, 2017, 259, 35-47.	1.7	42
41	Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato. Plant Science, 2017, 256, 120-130.	1.7	121
42	Phytochromobilin deficiency impairs sugar metabolism through the regulation of cytokinin and auxin signaling in tomato fruits. Scientific Reports, 2017, 7, 7822.	1.6	39
43	micro <scp>RNA</scp> 159â€ŧargeted <i>SI<scp>GAMYB</scp></i> transcription factors are required for fruit set in tomato. Plant Journal, 2017, 92, 95-109.	2.8	76
44	Expression of the <i>Theobroma cacao Baxâ€inhibitorâ€1</i> gene in tomato reduces infection by the hemibiotrophic pathogen <i>Moniliophthora perniciosa</i> . Molecular Plant Pathology, 2017, 18, 1101-1112.	2.0	9
45	RNA interference as a gene silencing tool to control <i><i>Tuta absoluta</i></i> i>in tomato (Solanum) Tj ETQq1 2	1 0.784314	rgBT /Overlo
46	Plant proton pumps as markers of biostimulant action. Scientia Agricola, 2016, 73, 24-28.	0.6	35
47	Root growth restraint can be an acclimatory response to low <scp>pH</scp> and is associated with reduced cell mortality: a possible role of class <scp>III</scp> peroxidases and <scp>NADPH</scp> oxidases. Plant Biology, 2016, 18, 658-668.	1.8	16
48	Phosphorus speciation and highâ€ e ffinity transporters are influenced by humic substances. Journal of Plant Nutrition and Soil Science, 2016, 179, 206-214.	1.1	45
49	Comprehensive Profiling of Ethylene Response Factor Expression Identifies Ripening-Associated <i>ERF</i> Genes and Their Link to Key Regulators of Fruit Ripening in Tomato. Plant Physiology, 2016, 170, 1732-1744.	2.3	171
50	Down-regulation of tomato <i>PHYTOL KINASE</i> strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific manner. Journal of Experimental Botany, 2016, 67, 919-934.	2.4	39
51	Nitric Oxide, Ethylene, and Auxin Cross Talk Mediates Greening and Plastid Development in Deetiolating Tomato Seedlings. Plant Physiology, 2016, 170, 2278-2294.	2.3	63
52	Auxinic herbicides, mechanisms of action, and weed resistance: A look into recent plant science advances. Scientia Agricola, 2015, 72, 356-362.	0.6	42
53	Selection of tomato plant families using characters related to water deficit resistance. Horticultura Brasileira, 2015, 33, 27-33.	0.1	9
54	Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum). Journal of Plant Physiology, 2015, 177, 11-19.	1.6	38

#	Article	IF	CITATIONS
55	A mutation that eliminates bundle sheath extensions reduces leaf hydraulic conductance, stomatal conductance and assimilation rates in tomato (<i><scp>S</scp>olanum lycopersicum</i>). New Phytologist, 2015, 205, 618-626.	3.5	45
56	Fruits from ripening impaired, chlorophyll degraded and jasmonate insensitive tomato mutants have altered tocopherol content and composition. Phytochemistry, 2015, 111, 72-83.	1.4	34
57	Seed Germination in Tomato: A Focus on Interaction between Phytochromes and Gibberellins or Abscisic Acid. American Journal of Plant Sciences, 2014, 05, 2163-2169.	0.3	5
58	Interaction of <i><scp>M</scp>oniliophthora perniciosa</i> biotypes with <scp>M</scp> icroâ€ <scp>T</scp> om tomato: a model system to investigate the witches' broom disease of <i><scp>T</scp>heobroma cacao</i> . Plant Pathology, 2014, 63, 1251-1263.	1.2	17
59	micro <scp>RNA</scp> 156â€targeted <scp>SPL</scp> / <scp>SBP</scp> box transcription factors regulate tomato ovary and fruit development. Plant Journal, 2014, 78, 604-618.	2.8	205
60	Near-isogenic lines enhancing ascorbic acid, anthocyanin and carotenoid content in tomato (Solanum) Tj ETQq0 0 175, 111-120.	0 rgBT /C 1.7	Overlock 10 51
61	Tomato ethylene mutants exhibit differences in arbuscular mycorrhiza development and levels of plant defense-related transcripts. Symbiosis, 2013, 60, 155-167.	1.2	26
62	Novel natural genetic variation controlling the competence to form adventitious roots and shoots from the tomato wild relative Solanum pennellii. Plant Science, 2013, 199-200, 121-130.	1.7	13
63	Leaf senescence in tomato mutants as affected by irradiance and phytohormones. Biologia Plantarum, 2013, 57, 749-757.	1.9	21
64	Plant physiology as affected by humified organic matter. Theoretical and Experimental Plant Physiology, 2013, 25, 13-25.	1.1	76
65	Sinergism among auxins, gibberellins and cytokinins in tomato cv. Micro-Tom. Horticultura Brasileira, 2013, 31, 549-553.	0.1	14
66	The Tomato (Solanum Lycopersicum cv. Micro-Tom) Natural Genetic Variation Rg1 and the DELLA Mutant Procera Control the Competence Necessary to Form Adventitious Roots and Shoots. Journal of Experimental Botany, 2012, 63, 5689-5703.	2.4	53
67	Characterization of the <i>procera</i> Tomato Mutant Shows Novel Functions of the SIDELLA Protein in the Control of Flower Morphology, Cell Division and Expansion, and the Auxin-Signaling Pathway during Fruit-Set and Development A Â. Plant Physiology, 2012, 160, 1581-1596.	2.3	133
68	Biochemical and histological characterization of tomato mutants. Anais Da Academia Brasileira De Ciencias, 2012, 84, 573-585.	0.3	29
69	Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions. Plant Physiology and Biochemistry, 2012, 56, 79-96.	2.8	153
70	Base genética do hábito de crescimento e florescimento em tomateiro e sua importância na agricultura. Ciencia Rural, 2012, 42, 1941-1946.	0.3	10
71	Brassinosteroids as Mediators of Plant Biotic Stress Responses. , 2012, , 35-43.		Ο
72	Root growth of tomato seedlings intensified by humic substances from peat bogs. Revista Brasileira De Ciencia Do Solo, 2011, 35, 1609-1617.	0.5	18

#	Article	IF	CITATIONS
73	Enhanced transpiration rate in the <i>high pigment 1</i> tomato mutant and its physiological significance. Plant Biology, 2011, 13, 546-550.	1.8	17
74	Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants. Annals of Applied Biology, 2011, 159, 202-211.	1.3	74
75	Biochemical responses of the ethylene-insensitive Never ripe tomato mutant subjected to cadmium and sodium stresses. Environmental and Experimental Botany, 2011, 71, 306-320.	2.0	128
76	Convergence of developmental mutants into a single tomato model system: 'Micro-Tom' as an effective toolkit for plant development research. Plant Methods, 2011, 7, 18.	1.9	161
77	Inhibition of Auxin Transport from the Ovary or from the Apical Shoot Induces Parthenocarpic Fruit-Set in Tomato Mediated by Gibberellins Â. Plant Physiology, 2010, 153, 851-862.	2.3	97
78	Small and remarkable. Plant Signaling and Behavior, 2010, 5, 267-270.	1.2	43
79	Bioactivity of Chemically Transformed Humic Matter from Vermicompost on Plant Root Growth. Journal of Agricultural and Food Chemistry, 2010, 58, 3681-3688.	2.4	125
80	The Rg1 allele as a valuable tool for genetic transformation of the tomato 'Micro-Tom' model system. Plant Methods, 2010, 6, 23.	1.9	72
81	Hormonal modulation of photomorphogenesis-controlled anthocyanin accumulation in tomato (Solanum lycopersicum L. cv Micro-Tom) hypocotyls: Physiological and genetic studies. Plant Science, 2010, 178, 258-264.	1.7	32
82	Regulação do desenvolvimento de micorrizas arbusculares. Revista Brasileira De Ciencia Do Solo, 2009, 33, 1-16.	0.5	32
83	Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environmental and Experimental Botany, 2009, 67, 387-394.	2.0	137
84	Abscisic acid and auxin accumulation in Catasetum fimbriatum roots growing in vitro with high sucrose and mannitol content. Biologia Plantarum, 2009, 53, 560-564.	1.9	6
85	Callus, shoot and hairy root formation in vitro as affected by the sensitivity to auxin and ethylene in tomato mutants. Plant Cell Reports, 2009, 28, 1169-1177.	2.8	25
86	Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. Journal of Experimental Botany, 2009, 60, 4347-4361.	2.4	129
87	Adjustment of Mineral Elements in the Culture Medium for the Micropropagation of Three Vriesea Bromeliads from the Brazilian Atlantic Forest: The Importance of Calcium. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 106-112.	0.5	28
88	Acquired tolerance of tomato (<i>Lycopersicon esculentum </i> cv. Microâ€Tom) plants to cadmiumâ€induced stress. Annals of Applied Biology, 2008, 153, 321-333.	1.3	173
89	Reduced arbuscular mycorrhizal colonization in tomato ethylene mutants. Scientia Agricola, 2008, 65, 259-267.	0.6	57
90	The Isolation of Antioxidant Enzymes from Mature Tomato (cv. Micro-Tom) Plants. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 1608-1610.	0.5	19

#	Article	IF	CITATIONS
91	Relações entre o potencial e a temperatura da folha de plantas de milho e sorgo submetidas a estresse hÃdrico. Acta Scientiarum - Agronomy, 2007, 29, .	0.6	2
92	Changes in root development of <i>Arabidopsis </i> promoted by organic matter from oxisols. Annals of Applied Biology, 2007, 151, 199-211.	1.3	69
93	Grafting of tomato mutants onto potato rootstocks: An approach to study leaf-derived signaling on tuberization. Plant Science, 2005, 169, 680-688.	1.7	26
94	Micro-MsK: a tomato genotype with miniature size, short life cycle, and improved in vitro shoot regeneration. Plant Science, 2004, 167, 753-757.	1.7	33
95	Indole-3-acetic acid metabolism in normal and dwarf micropropagated banana plants (Musa spp. AAA). Brazilian Journal of Plant Physiology, 2002, 14, 211-217.	0.5	3
96	Title is missing!. Plant Cell, Tissue and Organ Culture, 2001, 65, 37-44.	1.2	48
97	Dry matter partitioning differences between shoots and roots in two contrasting genotypes of orchids and their relationship with endogenous levels of auxins, cytokinins and abscisic acid. Brazilian Journal of Plant Physiology, 2001, 13, 185-195.	0.1	5
98	High cytokinin accumulation following root tip excision changes the endogenous auxin-to-cytokinin ratio during root-to-shoot conversion in Catasetum fimbriatum Lindl (Orchidaceae). Plant Cell Reports, 1999, 18, 1002-1006.	2.8	35
99	Effects of Auxin, Cytokinin and Ethylene Treatments on the Endogenous Ethylene and Auxin-to-cytokinins Ratio Related to direct Root Tip Conversion of Catasetum fimbriatum Lindl. (Orchidaceae) into Buds. Journal of Plant Physiology, 1999, 155, 551-555.	1.6	25
100	Endogenous Levels of Cytokinins, Indoleacetic Acid, Abscisic Acid, and Pigments in Variegated Somaclones of Micropropagated Banana Leaves. Journal of Plant Growth Regulation, 1998, 17, 59-61.	2.8	34