Francesco Zaccaria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6587877/publications.pdf

Version: 2024-02-01

566801 676716 32 554 15 22 citations h-index g-index papers 35 35 35 409 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	A Highâ€Throughput Approach to Repurposing Olefin Polymerization Catalysts for Polymer Upcycling. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
2	Molecular Catalysis in "Green―Hydrogen Production. Frontiers in Catalysis, 2022, 2, .	1.8	5
3	Optimizing noble metals exploitation in water oxidation catalysis by their incorporation in layered double hydroxides. Inorganica Chimica Acta, 2021, 516, 120161.	1.2	7
4	Understanding the Deactivation Pathways of Iridium(III) Pyridine arboxiamide Catalysts for Formic Acid Dehydrogenation. Chemistry - A European Journal, 2021, 27, 2050-2064.	1.7	16
5	Chain Transfer to Solvent and Monomer in Early Transition Metal Catalyzed Olefin Polymerization: Mechanisms and Implications for Catalysis. Catalysts, 2021, 11, 215.	1.6	8
6	Methylaluminoxane's Molecular Cousin: A Well-defined and "Complete―Al-Activator for Molecular Olefin Polymerization Catalysts. ACS Catalysis, 2021, 11, 4464-4475.	5 . 5	26
7	Hafnium vs. Zirconium, the Perpetual Battle for Supremacy in Catalytic Olefin Polymerization: A Simple Matter of Electrophilicity?. Polymers, 2021, 13, 2621.	2.0	9
8	Substituent Effects on the Activity of Cp*Ir(pyridine-carboxylate) Water Oxidation Catalysts: Which Ligand Fragments Remain Coordinated to the Active Ir Centers?. Organometallics, 2021, 40, 3445-3453.	1.1	10
9	Hemi-metallocene Ti(IV) î·3-allyl-type complexes: Structure, dynamics in solution and exploration of reactivity. Inorganica Chimica Acta, 2021, 527, 120565.	1.2	0
10	Molecular and Heterogenized Cp*Ir Water Oxidation Catalysts Bearing Glyphosate and Glyphosine as Ancillary and Anchoring Ligands. European Journal of Inorganic Chemistry, 2021, 2021, 299-307.	1.0	8
11	lon pairing in transition metal catalyzed olefin polymerization. Advances in Organometallic Chemistry, 2020, 73, 1-78.	0.5	28
12	On the Nature of the Lewis Acidic Sites in "TMAâ€Free―Phenolâ€Modified Methylaluminoxane. European Journal of Inorganic Chemistry, 2020, 2020, 1088-1095.	1.0	25
13	High-Throughput Experimentation in Olefin Polymerization Catalysis: Facing the Challenges of Miniaturization. Industrial & Engineering Chemistry Research, 2020, 59, 13940-13947.	1.8	26
14	Molecular and heterogenized dinuclear Ir-Cp* water oxidation catalysts bearing EDTA or EDTMP as bridging and anchoring ligands. Science Bulletin, 2020, 65, 1614-1625.	4.3	15
15	Monitoring the Kinetics of Internal Donor Clean-up from Ziegler–Natta Catalytic Surfaces: An Integrated Experimental and Computational Study. Journal of Physical Chemistry C, 2020, 124, 14245-14252.	1.5	8
16	Iridium-Doped Nanosized Zn–Al Layered Double Hydroxides as Efficient Water Oxidation Catalysts. ACS Applied Materials & Diterfaces, 2020, 12, 32736-32745.	4.0	24
17	Ir- and Ru-doped layered double hydroxides as affordable heterogeneous catalysts for electrochemical water oxidation. Dalton Transactions, 2020, 49, 2468-2476.	1.6	29
18	Reactivity Trends of Lewis Acidic Sites in Methylaluminoxane and Some of Its Modifications. Inorganic Chemistry, 2020, 59, 5751-5759.	1.9	28

#	Article	lF	Citations
19	The Mathematics of Ethylene OligomerisationÂand Polymerisation. Topics in Catalysis, 2020, 63, 294-318.	1.3	16
20	Iridium Water Oxidation Catalysts Based on Pyridine arbene Alkylâ€6ubstituted Ligands. ChemCatChem, 2019, 11, 5353-5361.	1.8	22
21	Separating Electronic from Steric Effects in Ethene/ \hat{l} ±-Olefin Copolymerization: A Case Study on Octahedral [ONNO] Zr-Catalysts. Processes, 2019, 7, 384.	1.3	9
22	Extraction of Reliable Molecular Information from Diffusion NMR Spectroscopy: Hydrodynamic Volume or Molecular Mass?. Chemistry - A European Journal, 2019, 25, 9930-9937.	1.7	26
23	BHT-Modified MAO: Cage Size Estimation, Chemical Counting of Strongly Acidic Al Sites, and Activation of a Ti-Phosphinimide Precatalyst. ACS Catalysis, 2019, 9, 2996-3010.	5.5	26
24	From Mechanistic Investigation to Quantitative Prediction. , 2019, , 287-326.		4
25	Internal Donors in Ziegler-Natta Systems: is Reduction by AlR3 a Requirement for Donor Clean-Up?. ChemCatChem, 2018, 10, 863-863.	1.8	1
26	Internal Donors in Ziegler–Natta Systems: is Reduction by AlR ₃ a Requirement for Donor Cleanâ€Up?. ChemCatChem, 2018, 10, 984-988.	1.8	21
27	Toluene and α-Olefins as Radical Scavengers: Direct NMR Evidence for Homolytic Chain Transfer Mechanism Leading to Benzyl and "Dormant―Titanium Allyl Complexes. Organometallics, 2018, 37, 4189-4194.	1.1	13
28	Catalyst Mileage in Olefin Polymerization: The Peculiar Role of Toluene. Organometallics, 2018, 37, 2872-2879.	1.1	15
29	Accurate Prediction of Copolymerization Statistics in Molecular Olefin Polymerization Catalysis: The Role of Entropic, Electronic, and Steric Effects in Catalyst Comonomer Affinity. ACS Catalysis, 2017, 7, 1512-1519.	5.5	54
30	Backbone rearrangement during olefin capture as the rate limiting step in molecular olefin polymerization catalysis and its effect on comonomer affinity. Journal of Polymer Science Part A, 2017, 55, 2807-2814.	2.5	39
31	Chain Transfer to Solvent in Propene Polymerization with Ti Cp-phosphinimide Catalysts: Evidence for Chain Termination via Ti–C Bond Homolysis. ACS Catalysis, 2016, 6, 7989-7993.	5 . 5	31
32	A Highâ€Throughput Approach to Repurposing Olefin Polymerization Catalysts for Polymer Upcycling. Angewandte Chemie, 0, , .	1.6	0