Guillaume Lenoir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6587205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A New Method for the Reconstitution of Membrane Proteins into Giant Unilamellar Vesicles. Biophysical Journal, 2004, 87, 419-429.	0.5	227
2	CDC50 Proteins Are Critical Components of the Human Class-1 P4-ATPase Transport Machinery. Journal of Biological Chemistry, 2010, 285, 40562-40572.	3.4	128
3	Structure and autoregulation of a P4-ATPase lipid flippase. Nature, 2019, 571, 366-370.	27.8	126
4	Cdc50p Plays a Vital Role in the ATPase Reaction Cycle of the Putative Aminophospholipid Transporter Drs2p. Journal of Biological Chemistry, 2009, 284, 17956-17967.	3.4	117
5	On the molecular mechanism of flippase- and scramblase-mediated phospholipid transport. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 767-783.	2.4	79
6	On the origin of lipid asymmetry: the flip side of ion transport. Current Opinion in Chemical Biology, 2007, 11, 654-661.	6.1	69
7	Calcium Transport by Sarcoplasmic Reticulum Ca2+-ATPase. Journal of Biological Chemistry, 2002, 277, 38647-38659.	3.4	63
8	Overproduction in yeast and rapid and efficient purification of the rabbit SERCA1a Ca2+-ATPase. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1560, 67-83.	2.6	61
9	Odorant and pheromone binding by aphrodisin, a hamster aphrodisiac protein. FEBS Letters, 2000, 476, 179-185.	2.8	55
10	Phosphatidylserine Stimulation of Drs2p·Cdc50p Lipid Translocase Dephosphorylation Is Controlled by Phosphatidylinositol-4-phosphate. Journal of Biological Chemistry, 2012, 287, 13249-13261.	3.4	54
11	Functional Properties of Sarcoplasmic Reticulum Ca2+-ATPase after Proteolytic Cleavage at Leu119-Lys120, Close to the A-domain. Journal of Biological Chemistry, 2004, 279, 9156-9166.	3.4	36
12	Expression in yeast and purification of a membrane protein, SERCA1a, using a biotinylated acceptor domain. Protein Expression and Purification, 2006, 48, 32-42.	1.3	33
13	High phosphatidylinositol 4-phosphate (PI4P)-dependent ATPase activity for the Drs2p-Cdc50p flippase after removal of its N- and C-terminal extensions. Journal of Biological Chemistry, 2017, 292, 7954-7970.	3.4	29
14	Structural Basis of Substrate-Independent Phosphorylation in a P4-ATPase Lipid Flippase. Journal of Molecular Biology, 2021, 433, 167062.	4.2	27
15	P4-ATPases: how an old dog learnt new tricks — structure and mechanism of lipid flippases. Current Opinion in Structural Biology, 2020, 63, 65-73.	5.7	25
16	A High-Yield Co-Expression System for the Purification of an Intact Drs2p-Cdc50p Lipid Flippase Complex, Critically Dependent on and Stabilized by Phosphatidylinositol-4-Phosphate. PLoS ONE, 2014, 9, e112176.	2.5	23
17	Autoinhibition and regulation by phosphoinositides of ATP8B1, a human lipid flippase associated with intrahepatic cholestatic disorders. ELife, 2022, 11, .	6.0	20
18	Transport Pathways That Contribute to the Cellular Distribution of Phosphatidylserine. Frontiers in Cell and Developmental Biology, 2021, 9, 737907.	3.7	19

Guillaume Lenoir

#	Article	IF	CITATIONS
19	Inhibitors Bound to Ca ²⁺ -Free Sarcoplasmic Reticulum Ca ²⁺ â~ATPase Lock Its Transmembrane Region but Not Necessarily Its Cytosolic Region, Revealing the Flexibility of the Loops Connecting Transmembrane and Cytosolic Domains. Biochemistry, 2007, 46, 15162-15174.	2.5	18
20	A robust method to screen detergents for membrane protein stabilization, revisited. Analytical Biochemistry, 2016, 511, 31-35.	2.4	18
21	A P ₄ -ATPase Protein Interaction Network Reveals a Link between Aminophospholipid Transport and Phosphoinositide Metabolism. Journal of Proteome Research, 2010, 9, 833-842.	3.7	16
22	Involvement of the L6–7 Loop in SERCA1a Ca2+-ATPase Activation by Ca2+ (or Sr2+) and ATP. Journal of Biological Chemistry, 2004, 279, 32125-32133.	3.4	15
23	ATP2, The essential P4-ATPase of malaria parasites, catalyzes lipid-stimulated ATP hydrolysis in complex with a Cdc50 β-subunit. Emerging Microbes and Infections, 2021, 10, 132-147.	6.5	14
24	Conformational Changes in Sarcoplasmic Reticulum Ca2+-ATPase Mutants:Â Effect of Mutations either at Ca2+-Binding Site II or at Tryptophan 552 in the Cytosolic Domainâ€. Biochemistry, 2006, 45, 5261-5270.	2.5	13
25	Coordinated Overexpression in Yeast of a P4-ATPase and Its Associated Cdc50 Subunit: The Case of the Drs2p/Cdc50p Lipid Flippase Complex. Methods in Molecular Biology, 2016, 1377, 37-55.	0.9	13
26	The SERCA residue Glu340 mediates interdomain communication that guides Ca ²⁺ transport. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31114-31122.	7.1	12
27	Screening of Detergents for Stabilization of Functional Membrane Proteins. Current Protocols in Protein Science, 2018, 93, e59.	2.8	8
28	Slow Phospholipid Exchange between a Detergent-Solubilized Membrane Protein and Lipid-Detergent Mixed Micelles: Brominated Phospholipids as Tools to Follow Its Kinetics. PLoS ONE, 2017, 12, e0170481.	2.5	7
29	Overexpression of Membrane Proteins in Saccharomyces cerevisiae for Structural and Functional Studies: A Focus on the Rabbit Ca2+-ATPase Serca1a and on the Yeast Lipid "Flippase―Complex Drs2p/Cdc50p. , 2014, , 133-171.		6
30	Proteolytic Studies on the Transduction Mechanism of Sarcoplasmic Reticulum Ca ²⁺ â€ATPase. Annals of the New York Academy of Sciences, 2003, 986, 82-89.	3.8	3
31	Interaction of detergents with biological membranes: Comparison of fluorescence assays with filtration protocols and implications for the rates of detergent association, dissociation and flip-flop. PLoS ONE, 2019, 14, e0222932.	2.5	3
32	Overexpression of SERCA1a Ca ²⁺ â€ATPase in Yeast. Annals of the New York Academy of Sciences, 2003, 986, 312-314.	3.8	2
33	Purification of SERCA <i>1a</i> Ca ²⁺ â€ATPase Mutants Expressed in Yeast. Annals of the New York Academy of Sciences, 2003, 986, 333-334.	3.8	1
34	The elusive flippases. Current Biology, 2004, 14, R912-R913.	3.9	1
35	Phosphatidylserine stimulation of Drs2p·Cdc50p lipid translocase dephosphorylation is controlled by phosphatidylinositol-4-phosphate Journal of Biological Chemistry, 2012, 287, 44580.	3.4	1
36	Origin and significance of membrane asymmetry in yeast. FASEB Journal, 2007, 21, A38.	0.5	0