Ali Tehranchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6587067/publications.pdf

Version: 2024-02-01

13	557	12	13
papers	citations	h-index	g-index
13	13	13	471 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Solute strengthening of basal slip in Mg alloys. Acta Materialia, 2018, 151, 56-66.	3.8	87
2	Atomistic study of hydrogen embrittlement of grain boundaries in nickel: I. Fracture. Journal of the Mechanics and Physics of Solids, 2017, 101, 150-165.	2.3	84
3	Calculation of the Additional Constants for fcc Materials in Second Strain Gradient Elasticity: Behavior of a Nano-Size Bernoulli-Euler Beam With Surface Effects. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	1.1	56
4	A decohesion pathway for hydrogen embrittlement in nickel: Mechanism and quantitative prediction. Acta Materialia, 2020, 185, 98-109.	3.8	55
5	Ab initio calculations of characteristic lengths of crystalline materials in first strain gradient elasticity. Mechanics of Materials, 2013, 61, 73-78.	1.7	52
6	The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals. Engineering Fracture Mechanics, 2019, 216, 106502.	2.0	51
7	A formulation for the characteristic lengths of fcc materials in first strain gradient elasticity via the Sutton–Chen potential. Philosophical Magazine, 2010, 90, 1893-1913.	0.7	36
8	Softening and hardening of yield stress by hydrogen–solute interactions. Philosophical Magazine, 2017, 97, 400-418.	0.7	34
9	Hydrogen–vacancy–dislocation interactions in <i>α</i> Fe. Modelling and Simulation in Materials Science and Engineering, 2017, 25, 025001.	0.8	28
10	Atomistic study of hydrogen embrittlement of grain boundaries in nickel: II. Decohesion. Modelling and Simulation in Materials Science and Engineering, 2017, 25, 075013.	0.8	21
11	Multiscale Modelling of Hydrogen Transport and Segregation in Polycrystalline Steels. Metals, 2018, 8, 430.	1.0	21
12	Mechanism and Prediction of Hydrogen Embrittlement in fcc Stainless Steels and High Entropy Alloys. Physical Review Letters, 2021, 127, 175501.	2.9	20
13	On the viscoelastic beam subjected to moving mass. Advances in Engineering Software, 2010, 41, 240-247.	1.8	12