Devin J Kenney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6586567/publications.pdf

Version: 2024-02-01

1307594 1720034 8 425 7 7 citations g-index h-index papers 11 11 11 716 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. ELife, 2021, 10, .	6.0	160
2	The transcription factor TCF-1 enforces commitment to the innate lymphoid cell lineage. Nature Immunology, 2019, 20, 1150-1160.	14.5	81
3	SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway. Journal of Virology, 2021, 95, e0086221.	3.4	58
4	Comparative analysis reveals the species-specific genetic determinants of ACE2 required for SARS-CoV-2 entry. PLoS Pathogens, 2021, 17, e1009392.	4.7	34
5	A Shared Regulatory Element Controls the Initiation of Tcf7 Expression During Early T Cell and Innate Lymphoid Cell Developments. Frontiers in Immunology, 2020, 11, 470.	4.8	23
6	Characterization of SARS-CoV-2 Variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 by Cell Entry and Immune Evasion. MBio, 2022, 13, e0009922.	4.1	22
7	Humanized mice reveal a macrophage-enriched gene signature defining human lung tissue protection during SARS-CoV-2 infection. Cell Reports, 2022, 39, 110714.	6.4	14
8	Microfluidic device as a facile in vitro tool to generate and investigate lipid gradients. Chemistry and Physics of Lipids, 2018, 210, 109-121.	3.2	1