Ben Pascoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/658601/publications.pdf

Version: 2024-02-01

66 papers

2,397 citations

236612 25 h-index 243296 44 g-index

90 all docs 90 docs citations

90 times ranked 2971 citing authors

#	Article	IF	CITATIONS
1	Combined Analysis of Variation in Core, Accessory and Regulatory Genome Regions Provides a Super-Resolution View into the Evolution of Bacterial Populations. PLoS Genetics, 2016, 12, e1006280.	1.5	177
2	Ecological Overlap and Horizontal Gene Transfer in Staphylococcus aureus and Staphylococcus epidermidis. Genome Biology and Evolution, 2015, 7, 1313-1328.	1.1	130
3	Progressive genomeâ€wide introgression in agricultural <i>Campylobacter coli</i> . Molecular Ecology, 2013, 22, 1051-1064.	2.0	128
4	Rapid host switching in generalist <i>Campylobacter</i> strains erodes the signal for tracing human infections. ISME Journal, 2016, 10, 721-729.	4.4	123
5	A Reference Pan-Genome Approach to Comparative Bacterial Genomics: Identification of Novel Epidemiological Markers in Pathogenic Campylobacter. PLoS ONE, 2014, 9, e92798.	1.1	122
6	Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nature Communications, 2018, 9, 5034.	5.8	115
7	Genomeâ€wide association of functional traits linked with <scp><i>C</i></scp> <i>ampylobacter jejuni</i> survival from farm to fork. Environmental Microbiology, 2017, 19, 361-380.	1.8	88
8	Genome-Wide Identification of Host-Segregating Epidemiological Markers for Source Attribution in Campylobacter jejuni. Applied and Environmental Microbiology, 2017, 83, .	1.4	82
9	Enhanced biofilm formation and multiâ€host transmission evolve from divergent genetic backgrounds in <scp><i>C</i></scp> <i>ampylobacter jejuni</i> . Environmental Microbiology, 2015, 17, 4779-4789.	1.8	76
10	Genome evolution and the emergence of pathogenicity in avian Escherichia coli. Nature Communications, 2021, 12, 765.	5.8	69
11	Zinc-Responsive Regulation of Alternative Ribosomal Protein Genes in Streptomyces coelicolor Involves Zur and $If\ R$. Journal of Bacteriology, 2007, 189, 4078-4086.	1.0	68
12	Gene pool transmission of multidrug resistance among <i>Campylobacter</i> from livestock, sewage and human disease. Environmental Microbiology, 2019, 21, 4597-4613.	1.8	68
13	The Zinc-Responsive Regulator Zur Controls Expression of the Coelibactin Gene Cluster in <i>Streptomyces coelicolor</i>). Journal of Bacteriology, 2010, 192, 608-611.	1.0	65
14	Comparative Genomics Study of Staphylococcus epidermidis Isolates from Orthopedic-Device-Related Infections Correlated with Patient Outcome. Journal of Clinical Microbiology, 2017, 55, 3089-3103.	1.8	55
15	A GWAS on Helicobacter pylori strains points to genetic variants associated with gastric cancer risk. BMC Biology, 2018, 16, 84.	1.7	55
16	Agricultural intensification and the evolution of host specialism in the enteric pathogen <i>Campylobacter jejuni</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11018-11028.	3.3	50
17	Biofilm Morphotypes and Population Structure among Staphylococcus epidermidis from Commensal and Clinical Samples. PLoS ONE, 2016, 11, e0151240.	1.1	49
18	Recombination-Mediated Host Adaptation by Avian Staphylococcus aureus. Genome Biology and Evolution, 2017, 9, 830-842.	1.1	46

#	Article	IF	CITATIONS
19	Lineageâ€specific plasmid acquisition and the evolution of specialized pathogens in <i>Bacillus thuringiensis</i> and the <i>Bacillus cereus</i> group. Molecular Ecology, 2018, 27, 1524-1540.	2.0	43
20	Epistasis analysis uncovers hidden antibiotic resistance-associated fitness costs hampering the evolution of MRSA. Genome Biology, 2018, 19, 94.	3.8	43
21	Genome Comparison of Erythromycin Resistant Campylobacter from Turkeys Identifies Hosts and Pathways for Horizontal Spread of erm(B) Genes. Frontiers in Microbiology, 2017, 8, 2240.	1.5	38
22	Local genes for local bacteria: Evidence of allopatry in the genomes of transatlantic <i>Campylobacter</i> populations. Molecular Ecology, 2017, 26, 4497-4508.	2.0	36
23	Molecular epidemiology and comparative genomics of Campylobacter concisus strains from saliva, faeces and gut mucosal biopsies in inflammatory bowel disease. Scientific Reports, 2018, 8, 1902.	1.6	35
24	Genomic structure and insertion sites of Helicobacter pylori prophages from various geographical origins. Scientific Reports, 2017, 7, 42471.	1.6	34
25	Persistent Staphylococcus aureus Isolates from Two Independent Cases of Bacteremia Display Increased Bacterial Fitness and Novel Immune Evasion Phenotypes. Infection and Immunity, 2015, 83, 3311-3324.	1.0	33
26	Dormant Cells of Staphylococcus aureus Are Resuscitated by Spent Culture Supernatant. PLoS ONE, 2014, 9, e85998.	1.1	30
27	Staphylococcus epidermidis in Biomaterial-Associated Infections. , 2013, , 25-56.		29
28	Prevalence of faecal carriage of extendedâ€spectrum βâ€lactamase (ESBL)â€producing <i>Escherichia coli</i> in veterinary hospital staff and students. Veterinary Record Open, 2019, 6, e000307.	0.3	26
29	Domestication of Campylobacter jejuni NCTC 11168. Microbial Genomics, 2019, 5, .	1.0	26
30	Evidence of landâ€sea transfer of the zoonotic pathogen ⟨i⟩Campylobacter⟨/i⟩ to a wildlife marine sentinel species. Molecular Ecology, 2015, 24, 208-221.	2.0	25
31	Genetic features of livestock-associated Staphylococcus aureus ST9 isolates from Chinese pigs that carry the Isa(E) gene for quinupristin/dalfopristin resistance. International Journal of Medical Microbiology, 2016, 306, 722-729.	1.5	25
32	Campylobacter jejuni genotypes are associated with post-infection irritable bowel syndrome in humans. Communications Biology, 2021, 4, 1015.	2.0	24
33	A 500-year tale of co-evolution, adaptation, and virulence: <i>Helicobacter pylori</i> in the Americas. ISME Journal, 2021, 15, 78-92.	4.4	23
34	Genetic Diversity of Composite Enterotoxigenic Staphylococcus epidermidis Pathogenicity Islands. Genome Biology and Evolution, 2019, 11, 3498-3509.	1.1	21
35	From Escherich to the Escherichia coli genome. Lancet Infectious Diseases, The, 2016, 16, 634-636.	4.6	20
36	Genomic epidemiology of Campylobacter jejuni associated with asymptomatic pediatric infection in the Peruvian Amazon. PLoS Neglected Tropical Diseases, 2020, 14, e0008533.	1.3	20

#	Article	IF	CITATIONS
37	Bayesian identification of bacterial strains from sequencing data. Microbial Genomics, 2016, 2, e000075.	1.0	19
38	The Potential of Isolation Source to Predict Colonization in Avian Hosts: A Case Study in Campylobacter jejuni Strains From Three Bird Species. Frontiers in Microbiology, 2018, 9, 591.	1.5	18
39	Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter. ELife, 2022, 11 , .	2.8	17
40	Stress resistance associated with multi-host transmission and enhanced biofilm formation at 42°C among hyper-aerotolerant generalist Campylobacter jejuni. Food Microbiology, 2021, 95, 103706.	2.1	16
41	Core genome sequence analysis to characterize Salmonella enterica serovar Rissen ST469 from a swine production chain. International Journal of Food Microbiology, 2019, 304, 68-74.	2.1	15
42	Genome-Wide Identification of Host-Segregating Single-Nucleotide Polymorphisms for Source Attribution of Clinical Campylobacter coli Isolates. Applied and Environmental Microbiology, 2020, 86, .	1.4	15
43	Genomic epidemiology of clinical Campylobacter spp. at a single health trust site. Microbial Genomics, 2018, 4, .	1.0	15
44	High-resolution sweep metagenomics using fast probabilistic inference. Wellcome Open Research, 0, 5, 14.	0.9	14
45	Large Sequence Diversity within the Biosynthesis Locus and Common Biochemical Features of Campylobacter coli Lipooligosaccharides. Journal of Bacteriology, 2016, 198, 2829-2840.	1.0	13
46	High-resolution sweep metagenomics using fast probabilistic inference. Wellcome Open Research, 2020, 5, 14.	0.9	13
47	Whole-genome characterisation of multidrug resistant monophasic variants of <i>Salmonella < /i>Typhimurium from pig production in Thailand. PeerJ, 0, 8, e9700.</i>	0.9	13
48	Convergent Amino Acid Signatures in Polyphyletic Campylobacter jejuni Subpopulations Suggest Human Niche Tropism. Genome Biology and Evolution, 2018, 10, 763-774.	1.1	12
49	Genomic epidemiology of the commercially important pathogen Renibacterium salmoninarum within the Chilean salmon industry. Microbial Genomics, 2018, 4, .	1.0	12
50	Quantifying bacterial evolution in the wild: A birthday problem for Campylobacter lineages. PLoS Genetics, 2021, 17, e1009829.	1.5	11
51	Comparative genomic survey of Bacillus cereus sensu stricto isolates from the dairy production chain in Brazil. FEMS Microbiology Letters, 2018, 365, .	0.7	10
52	The emergence of plasmid-borne cfr-mediated linezolid resistant-staphylococci in Vietnam. Journal of Global Antimicrobial Resistance, 2020, 22, 462-465.	0.9	7
53	Genome-wide association study of signature genetic alterations among pseudomonas aeruginosa cystic fibrosis isolates. PLoS Pathogens, 2021, 17, e1009681.	2.1	7
54	Characterisation of Salmonella enterica clones carrying mcr-1 plasmids in meat products and patients in Northern Thailand using long read sequencing. International Journal of Food Microbiology, 2021, 358, 109314.	2.1	7

#	Article	IF	CITATIONS
55	Stereoselective Bacterial Metabolism of Antibiotics in Environmental Bacteria – A Novel Biochemical Workflow. Frontiers in Microbiology, 2021, 12, 562157.	1.5	4
56	Signatures of selection in core and accessory genomes indicate different ecological drivers of diversification among <i>Bacillus cereus</i> clades. Molecular Ecology, 2022, 31, 3584-3597.	2.0	4
57	Stereoselective metabolism of chloramphenicol by bacteria isolated from wastewater, and the importance of stereochemistry in environmental risk assessments for antibiotics. Water Research, 2022, 217, 118415.	5.3	3
58	Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance. Microbial Genomics, $2022, 8, .$	1.0	3
59	Draft Genome Sequence of an Enterobacter Species Associated with Illnesses and Powdered Infant Formula. Genome Announcements, 2016, 4, .	0.8	1
60	Molecular evidence for cross boundary spread of <i>Salmonella </i> spp. in meat sold at retail markets in the middle Mekong basin area. PeerJ, 2021, 9, e11255.	0.9	1
61	High Resolution Whole Genome Multilocus Sequence Typing (wgMLST) Schemes for Salmonella enterica Weltevreden Epidemiologic Investigations. Microbiology and Biotechnology Letters, 2018, 46, 162-170.	0.2	1
62	Comparative pangenomics of Campylobacter species. Access Microbiology, 2019, 1, .	0.2	1
63	Genomics for rational autogenous vaccine design to control Campylobacter infection in poultry. Access Microbiology, 2019, 1, .	0.2	O
64	Local genes, for local bacteria: biogeographical variation in Campylobacter accessory genome content. Access Microbiology, 2019, 1 , .	0.2	0
65	Genomic epidemiology of Campylobacter jejuni associated with asymptomatic pediatric infection in the Peruvian Amazon. Access Microbiology, 2020, 2, .	0.2	0
66	Identification of Streptococcus suis carriage in healthy pigs in Chiang Mai, Thailand., 2022, 20, 363-376.		0