Kunping Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6585715/publications.pdf Version: 2024-02-01

KUNDING GUO

#	Article	IF	CITATIONS
1	A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nature Photonics, 2015, 9, 233-238.	31.4	372
2	Stable green phosphorescence organic light-emitting diodes with low efficiency roll-off using a novel bipolar thermally activated delayed fluorescence material as host. Chemical Science, 2017, 8, 1259-1268.	7.4	77
3	Flexible electroluminescent fiber fabricated from coaxially wound carbon nanotube sheets. Journal of Materials Chemistry C, 2015, 3, 5621-5624.	5.5	69
4	Lanthanide-Induced Photoluminescence in Lead-Free Cs ₂ AgBiBr ₆ Bulk Perovskite: Insights from Optical and Theoretical Investigations. Journal of Physical Chemistry Letters, 2020, 11, 8893-8900.	4.6	38
5	High-performance flexible inverted organic light-emitting diodes by exploiting MoS ₂ nanopillar arrays as electron-injecting and light-coupling layers. Nanoscale, 2017, 9, 14602-14611.	5.6	32
6	lridium(<scp>iii</scp>) complexes bearing oxadiazol-substituted amide ligands: color tuning and application in highly efficient phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 9146-9156.	5.5	31
7	Functional versatile bipolar 3,3′-dimethyl-9,9′-bianthracene derivatives as an efficient host and deep-blue emitter. Dyes and Pigments, 2018, 148, 329-340.	3.7	25
8	Carrier transfer and luminescence characteristics of concentration-dependent phosphorescent Ir(ppy)3 doped CBP film. Optics and Laser Technology, 2014, 56, 20-24.	4.6	23
9	High-Efficiency Near Ultraviolet and Blue Organic Light-Emitting Diodes Using Star-Shaped Material as Emissive and Hosting Molecules. Journal of Display Technology, 2014, 10, 642-646.	1.2	23
10	Highly efficient and foldable top-emission organic light-emitting diodes based on Ag-nanoparticles modified graphite electrode. Organic Electronics, 2019, 64, 146-153.	2.6	22
11	A simple effective method to improve light out-coupling in organic light-emitting diodes by introducing pyramid-based texture structure. Organic Electronics, 2014, 15, 1113-1119.	2.6	21
12	Extremely high external quantum efficiency of inverted organic light-emitting diodes with low operation voltage and reduced efficiency roll-off by using sulfide-based double electron injection layers. RSC Advances, 2016, 6, 55626-55634.	3.6	21
13	Easily available, low-cost 9,9′-bianthracene derivatives as efficient blue hosts and deep-blue emitters in OLEDs. Organic Electronics, 2019, 66, 24-31.	2.6	19
14	Molecular Encapsulation of Naphthalene Diimide (NDI) Based Ï€â€Conjugated Polymers: A Tool for Understanding Photoluminescence. Angewandte Chemie - International Edition, 2021, 60, 25005-25012.	13.8	18
15	Switching the resistive memory behavior from binary to ternary logic <i>via</i> subtle polymer donor and molecular acceptor design. Journal of Materials Chemistry C, 2021, 9, 5643-5651.	5.5	16
16	Photoluminescence characteristics of organic molecules in the accelerated aging organic light-emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2716-2719.	1.8	14
17	Non-toxic near-infrared light-emitting diodes. IScience, 2021, 24, 102545.	4.1	14
18	Temperature-dependent device performance of organic photovoltaic cells based on a squaraine dye. Synthetic Metals, 2016, 222, 293-298.	3.9	13

Kunping Guo

#	Article	IF	CITATIONS
19	Effect of inverted-pyramid shape on light extraction of organic light-emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 646-650.	1.8	11
20	Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers. Chinese Physics B, 2016, 25, 038402.	1.4	11
21	Sunlight-like white organic light-emitting diodes with inorganic/organic nanolaminate distributed Bragg reflector (DBR) anode microcavity by using atomic layer deposition. Organic Electronics, 2016, 33, 88-94.	2.6	10
22	Additive solution deposition of multi-layered semiconducting polymer films for design of sophisticated device architectures. Journal of Materials Chemistry C, 2019, 7, 953-960.	5.5	10
23	Carrier transportation, photoluminescence and lasing characteristics of 1,4-bis[2-[4-[N,N-di(p-tolyl)amino]phenyl]vinyl]benzene: implications for diode-pumped organic solid-state lasers. Journal of Materials Chemistry C, 2014, 2, 8131-8136.	5.5	8
24	Organic light-emitting diodes using novel embedded al gird transparent electrodes. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87, 118-122.	2.7	8
25	Decrease of intermolecular interactions for less-doped efficient deep blue monomer light-emitting diodes. Organic Electronics, 2020, 78, 105577.	2.6	8
26	Synthesis of asymmetric biphenyl derivatives for optoelectronic applications. Optical Materials, 2013, 35, 2095-2101.	3.6	6
27	Pure blue and white light electroluminescence in a multilayer organic light-emitting diode using a new blue emitter. Chinese Physics B, 2014, 23, 077802.	1.4	6
28	Efficiency enhancement in DIBSQ:PC71BM organic photovoltaic cells by using Liq-doped Bphen as a cathode buffer layer. Frontiers of Materials Science, 2017, 11, 233-240.	2.2	6
29	Enhanced performance in inverted organic light-emitting diodes using Li ion doped ZnO cathode buffer layer. Molecular Crystals and Liquid Crystals, 2017, 651, 118-125.	0.9	6
30	Lasing and Transport Properties of Poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene)] (POFP) for the Application of Diode-Pumped Organic Solid Lasers. Nanoscale Research Letters, 2017, 12, 602.	5.7	6
31	Efficient Solutionâ€Processed Inverted Organic Lightâ€Emitting Diodes by Using Polyethyleneimine as Interface Layer. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800138.	1.8	6
32	Use of space interlayer in phosphorescent organic light-emitting diodes to improve efficiency and reduce efficiency roll-off. Journal Physics D: Applied Physics, 2016, 49, 235105.	2.8	5
33	Deepâ€blue, lowâ€threshold amplified spontaneous emitting and high thermal stability binaphthyl derivates. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2372-2377.	1.8	4
34	Reliability of organic light-emitting diodes in low-temperature environment*. Chinese Physics B, 2020, 29, 128503.	1.4	4
35	Effect of periodically modified n-type electron transport layers on the optoelectrical performance of organic light-emitting diodes. Materials Science in Semiconductor Processing, 2016, 56, 272-276.	4.0	2
36	Carrier transfer and luminescence characteristics of thicknessâ€dependent organic lightâ€emitting diodes using transporting material as the host of emitting layer. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600689.	1.8	2

Kunping Guo

#	Article	IF	CITATIONS
37	Molecular Encapsulation of Naphthalene Diimide (NDI) Based Ï€â€Conjugated Polymers: A Tool for Understanding Photoluminescence. Angewandte Chemie, 0, , .	2.0	2
38	High-Efficiency Red Phosphorescent Emitter and Its Application in Color-Tunable White Organic Light-Emitting Diodes. Nanoscience and Nanotechnology Letters, 2015, 7, 204-208.	0.4	2
39	Three-peak standard white organic light-emitting devices for solid-state lighting. Proceedings of SPIE, 2014, , .	0.8	1
40	High-brightness blue organic light emitting diodes with different types of guest-host systems. Optoelectronics Letters, 2016, 12, 89-92.	0.8	1
41	Low-energy consumption and high-color-quality white organic light-emitting diodes. , 2017, , .		1
42	Toward Improved Device Efficiency and Stability of Organic Lightâ€Emitting Diodes via External Pressure Treatment. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100120.	1.8	1
43	Inverted organic photovoltaics with a solution-processed Mg-doped ZnO electron transport layer annealed at 150 ŰC. Sustainable Energy and Fuels, 0, , .	4.9	1
44	High-performance color-tunable red organic light-emitting diodes for the application of an advanced adaptive rear-lighting system. Molecular Crystals and Liquid Crystals, 2017, 651, 126-132.	0.9	0
45	Color tunable and very-high color rendering white organic light-emitting diodes employing a heavy-metal-free single emitter. Surface and Coatings Technology, 2019, 363, 442-446.	4.8	0
46	Toward Improved Device Efficiency and Stability of Organic Lightâ€Emitting Diodes via External Pressure Treatment. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2170042.	1.8	0
47	Individually Addressable Color-Tuning White Organic Light-Emitting Diodes. Guangxue Xuebao/Acta Optica Sinica, 2014, 34, 1023002.	1.2	0
48	Simulation of Transient Delay Time in Organic LEDs and Application for Signal Transmission. Chinese Journal of Luminescence, 2017, 38, 188-193.	0.5	0
49	High-Performance Organic Photovoltaics Using Solution-Processed Graphene Oxide. Guangxue Xuebao/Acta Optica Sinica, 2017, 37, 0416001.	1.2	0