Jae W Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6585536/publications.pdf

Version: 2024-02-01

31818 26610 13,156 326 56 101 citations h-index g-index papers 328 328 328 11942 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Intrapulmonary Delivery of Bone Marrow-Derived Mesenchymal Stem Cells Improves Survival and Attenuates Endotoxin-Induced Acute Lung Injury in Mice. Journal of Immunology, 2007, 179, 1855-1863.	0.4	836
2	Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16357-16362.	3.3	653
3	Human Mesenchymal Stem Cell Microvesicles for Treatment of <i>Escherichia coli</i> Endotoxin-Induced Acute Lung Injury in Mice. Stem Cells, 2014, 32, 116-125.	1.4	550
4	Therapeutic Effects of Human Mesenchymal Stem Cell–derived Microvesicles in Severe Pneumonia in Mice. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 324-336.	2.5	392
5	Concise Review: Mesenchymal Stem Cells for Acute Lung Injury: Role of Paracrine Soluble Factors. Stem Cells, 2011, 29, 913-919.	1.4	355
6	Therapeutic Effects of Human Mesenchymal Stem Cells in <i>Ex Vivo</i> Human Lungs Injured with Live Bacteria. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 751-760.	2.5	313
7	Kinetics of Methane Hydrate Formation from SDS Solution. Industrial & Engineering Chemistry Research, 2007, 46, 6353-6359.	1.8	250
8	Allogeneic Human Mesenchymal Stem Cells Restore Epithelial Protein Permeability in Cultured Human Alveolar Type II Cells by Secretion of Angiopoietin-1*. Journal of Biological Chemistry, 2010, 285, 26211-26222.	1.6	230
9	Nitrous Oxide (N ₂ 0) Emission from Aquaculture: A Review. Environmental Science & Emp; Technology, 2012, 46, 6470-6480.	4.6	227
10	Lithium-ion capacitors with 2D Nb2CTx (MXene) $\hat{a} \in \text{``carbon nanotube electrodes. Journal of Power Sources, 2016, 326, 686-694.}$	4.0	175
11	Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3621-3626.	3.3	174
12	Nitrogen transformations in aquaponic systems: A review. Aquacultural Engineering, 2017, 76, 9-19.	1.4	174
13	Effect of plant species on nitrogen recovery in aquaponics. Bioresource Technology, 2015, 188, 92-98.	4.8	161
14	Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opinion on Biological Therapy, 2016, 16, 859-871.	1.4	156
15	Mesenchymal stem cells for acute lung injury: Preclinical evidence. Critical Care Medicine, 2010, 38, S569-S573.	0.4	144
16	Equilibrium of Hydrogen + Cyclopentane and Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Carbon Dioxide + Cyclopentane Binary Hydrates. Journal of Chemical & Cy	1.0	140
17	Thermodynamic analysis of hydrate-based pre-combustion capture of <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mi mathvariant="normal">CO</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><td>1.9 nrow><td>134 nl:msub></td></td></mml:math>	1.9 nrow> <td>134 nl:msub></td>	134 nl:msub>
18	Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia. Thorax, 2014, 69, 819-825.	2.7	133

#	Article	IF	CITATIONS
19	Human Mesenchymal Stem (Stromal) Cells Promote the Resolution of Acute Lung Injury in Part through Lipoxin A4. Journal of Immunology, 2015, 195, 875-881.	0.4	132
20	Potential application of mesenchymal stem cells in acute lung injury. Expert Opinion on Biological Therapy, 2009, 9, 1259-1270.	1.4	131
21	Cell-based Therapy for Acute Organ Injury. Anesthesiology, 2014, 121, 1099-1121.	1.3	127
22	Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane. Applied Energy, 2018, 211, 174-186.	5.1	126
23	In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production. Bioresource Technology, 2016, 221, 55-60.	4.8	113
24	Physiological and biochemical markers of alveolar epithelial barrier dysfunction in perfused human lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L52-L59.	1.3	106
25	Concurrent extraction and reaction for the production of biodiesel from wet microalgae. Bioresource Technology, 2014, 152, 534-537.	4.8	104
26	Nanostructured potassium copper hexacyanoferrate-cellulose hydrogel for selective and rapid cesium adsorption. Chemical Engineering Journal, 2017, 313, 1042-1050.	6.6	104
27	Effects of global financial crisis on network structure in a local stock market. Physica A: Statistical Mechanics and Its Applications, 2014, 407, 135-143.	1.2	103
28	Phase transition of Fe2O3–NiO to NiFe2O4 in perovskite catalytic particles for enhanced methane chemical looping reforming-decomposition with CO2 conversion. Applied Catalysis B: Environmental, 2017, 202, 175-183.	10.8	98
29	In situ transesterification of highly wet microalgae using hydrochloric acid. Bioresource Technology, 2015, 185, 421-425.	4.8	94
30	Surfactant Effects on Hydrate Crystallization at the Water–Oil Interface: Hollow-Conical Crystals. Crystal Growth and Design, 2012, 12, 3817-3824.	1.4	88
31	CO ₂ -Oxidized Ti ₃ C ₂ T _{<i>x</i>} –MXenes Components for Lithium–Sulfur Batteries: Suppressing the Shuttle Phenomenon through Physical and Chemical Adsorption. ACS Nano, 2020, 14, 9744-9754.	7.3	88
32	Adsorption of Sodium Dodecyl Sulfate at THF Hydrate/Liquid Interface. Journal of Physical Chemistry C, 2008, 112, 12381-12385.	1.5	87
33	Molybdenum oxide/carbon composites derived from the CO2 oxidation of Mo2CTx (MXene) for lithium ion battery anodes. Electrochimica Acta, 2017, 258, 979-987.	2.6	85
34	Correlation and network topologies in global and local stock indices. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2482-2489.	0.9	84
35	Mesenchymal Stem Cell–Derived Extracellular Vesicles Decrease Lung Injury in Mice. Journal of Immunology, 2019, 203, 1961-1972.	0.4	81
36	Review of recent technologies for transforming carbon dioxide to carbon materials. Chemical Engineering Journal, 2022, 427, 130980.	6.6	79

#	Article	IF	Citations
37	Facile Synthesis of Highly Electrocapacitive Nitrogen-Doped Graphitic Porous Carbons. Journal of Physical Chemistry C, 2014, 118, 9357-9367.	1.5	78
38	Does SDS micellize under methane hydrate-forming conditions below the normal Krafft point?. Journal of Colloid and Interface Science, 2007, 315, 313-318.	5.0	77
39	Highly porous N-doped carbons impregnated with sodium for efficient CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 10919-10927.	5.2	77
40	Adsorption of Cationic and Anionic Surfactants on Cyclopentane Hydrates. Journal of Physical Chemistry C, 2010, 114, 13385-13389.	1.5	76
41	Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system. Science of the Total Environment, 2014, 470-471, 193-200.	3.9	75
42	Salt effects on thermodynamic and rheological properties of hydrate forming emulsions. Chemical Engineering Science, 2013, 95, 148-160.	1.9	74
43	Acute Lung Injury Edema Fluid Decreases Net Fluid Transport across Human Alveolar Epithelial Type II Cells. Journal of Biological Chemistry, 2007, 282, 24109-24119.	1.6	73
44	Enhanced methane hydrate formation with cyclopentane hydrate seeds. Applied Energy, 2017, 202, 32-41.	5.1	73
45	Enhanced Kinetics of CO ₂ Hydrate Formation under Static Conditions. Industrial & Engineering Chemistry Research, 2009, 48, 5934-5942.	1.8	72
46	Concurrent production of biodiesel and chemicals through wet in situ transesterification of microalgae. Bioresource Technology, 2015, 193, 386-392.	4.8	72
47	Facile nano-templated CO2 conversion into highly interconnected hierarchical porous carbon for high-performance supercapacitor electrodes. Carbon, 2018, 126, 215-224.	5.4	71
48	Wet in situ transesterification of microalgae using ethyl acetate as a co-solvent and reactant. Bioresource Technology, 2017, 230, 8-14.	4.8	67
49	Chemical looping partial oxidation of methane with CO2 utilization on the ceria-enhanced mesoporous Fe2O3 oxygen carrier. Fuel, 2018, 215, 787-798.	3.4	65
50	Enhanced methane decomposition over nickel–carbon–B2O3 core–shell catalysts derived from carbon dioxide. Applied Catalysis B: Environmental, 2016, 186, 41-55.	10.8	61
51	Enhanced catalytic activity of methane dry reforming by the confinement of Ni nanoparticles into mesoporous silica. International Journal of Hydrogen Energy, 2017, 42, 11270-11282.	3.8	61
52	Rheology of Hydrate Forming Emulsions. Langmuir, 2010, 26, 11699-11704.	1.6	60
53	Nitrogen transformations in intensive aquaculture system and its implication to climate change through nitrous oxide emission. Bioresource Technology, 2013, 130, 314-320.	4.8	60
54	Highly effective Cs+ removal by turbidity-free potassium copper hexacyanoferrate-immobilized magnetic hydrogels. Journal of Hazardous Materials, 2017, 340, 130-139.	6.5	60

#	Article	IF	CITATIONS
55	Adsorption of Kinetic Inhibitors on Clathrate Hydrates. Journal of Physical Chemistry C, 2009, 113, 17418-17420.	1.5	59
56	Organically modified clay with potassium copper hexacyanoferrate for enhanced Cs ⁺ adsorption capacity and selective recovery by flotation. Journal of Materials Chemistry A, 2017, 5, 15130-15143.	5 . 2	59
57	Graphical methods for reaction distribution in a reactive distillation column. AICHE Journal, 2000, 46, 1218-1233.	1.8	58
58	Simplifying biodiesel production from microalgae via wet in situ transesterification: A review in current research and future prospects. Algal Research, 2019, 41, 101557.	2.4	56
59	Investigation of Macroscopic Interfacial Dynamics between Clathrate Hydrates and Surfactant Solutions. Langmuir, 2010, 26, 18119-18124.	1.6	55
60	Wet in situ transesterification of spent coffee grounds with supercritical methanol for the production of biodiesel. Bioresource Technology, 2018, 259, 465-468.	4.8	55
61	Adsorption of Surfactants on Two Different Hydrates. Langmuir, 2008, 24, 12723-12726.	1.6	54
62	Production of boron-doped porous carbon by the reaction of carbon dioxide with sodium borohydride at atmospheric pressure. Carbon, 2013, 53, 216-221.	5.4	54
63	Graphene Oxide/Carbon Nanotube Bilayer Flexible Membrane for Highâ€Performance Li–S Batteries with Superior Physical and Electrochemical Properties. Advanced Materials Interfaces, 2019, 6, 1801992.	1.9	53
64	Enhancement of highly-concentrated hydrogen productivity in chemical looping steam methane reforming using Fe-substituted LaCoO3. Energy Conversion and Management, 2020, 207, 112507.	4.4	53
65	Methane Hydrate Equilibrium and Formation Kinetics in the Presence of an Anionic Surfactant. Journal of Physical Chemistry C, 2007, 111, 4734-4739.	1.5	52
66	Low-frequency noise in junctionless multigate transistors. Applied Physics Letters, 2011, 98, .	1.5	52
67	Calorimetric investigation of cyclopentane hydrate formation in an emulsion. Chemical Engineering Science, 2012, 68, 481-491.	1.9	52
68	Selective separation of cesium contaminated clays from pristine clays by flotation. Chemical Engineering Journal, 2019, 355, 797-804.	6.6	52
69	Competitive adsorption between SDS and carbonate on tetrahydrofuran hydrates. Journal of Colloid and Interface Science, 2010, 341, 286-288.	5.0	51
70	Regulated gene expression in cultured type II cells of adult human lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L36-L50.	1.3	50
71	CO ₂ -Enhanced Thermolytic H ₂ Release from Ammonia Borane. Journal of Physical Chemistry C, 2011, 115, 8386-8392.	1.5	50
72	Rheology of cyclopentane hydrate slurry in a model oil-continuous emulsion. Rheologica Acta, 2016, 55, 235-243.	1.1	49

#	Article	IF	Citations
73	Nitrogen-rich hierarchical porous carbon paper for a free-standing cathode of lithium sulfur battery. Carbon, 2021, 172, 624-636.	5.4	49
74	Graphene intercalated free-standing carbon paper coated with MnO2 for anode materials of lithium ion batteries. Electrochimica Acta, 2020, 348, 136310.	2.6	48
75	Effects of temperature on nitrous oxide (N2O) emission from intensive aquaculture system. Science of the Total Environment, 2015, 518-519, 16-23.	3.9	46
76	Effect of hydrogenation on performance of TiO2(B) nanowire for lithium ion capacitors. Electrochemistry Communications, 2015, 60, 199-203.	2.3	46
77	Bio-Inspired Preparation of Clay–Hexacyanoferrate Composite Hydrogels as Super Adsorbents for Cs ⁺ . ACS Applied Materials & Interfaces, 2020, 12, 33173-33185.	4.0	46
78	Investigations of surfactant effects on gas hydrate formation via infrared spectroscopy. Journal of Colloid and Interface Science, 2012, 376, 173-176.	5.0	45
79	One-step formation of hydrogen clusters in clathrate hydrates stabilized via natural gas blending. Energy Storage Materials, 2020, 24, 655-661.	9.5	45
80	Multifractal behavior of the Korean stock-market index KOSPI. Physica A: Statistical Mechanics and Its Applications, 2006, 364, 355-361.	1.2	44
81	Direct Measurements of Contact Force between Clathrate Hydrates and Water. Langmuir, 2010, 26, 9187-9190.	1.6	44
82	Boron-doped carbon–iron nanocomposites as efficient oxygen reduction electrocatalysts derived from carbon dioxide. Chemical Communications, 2014, 50, 6349.	2.2	43
83	Graphical design applied to MTBE and methyl acetate reactive distillation processes. AICHE Journal, 2001, 47, 1333-1345.	1.8	42
84	Solvent-assisted synthesis of potassium copper hexacyanoferrate embedded 3D-interconnected porous hydrogel for highly selective and rapid cesium ion removal. Journal of Environmental Chemical Engineering, 2017, 5, 975-986.	3.3	42
85	Synthesis of functionalized porous montmorillonite via solid-state NaOH treatment for efficient removal of cesium and strontium ions. Applied Surface Science, 2018, 450, 404-412.	3.1	41
86	Thermal Decomposition and Spectroscopic Studies of Preheated Ammonia Borane. Journal of Physical Chemistry C, 2010, 114, 19529-19534.	1.5	40
87	Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method. Review of Scientific Instruments, 2010, 81, 114901.	0.6	39
88	Effect of boronâ€"nitrogen bonding on oxygen reduction reaction activity of BN Co-doped activated porous carbons. RSC Advances, 2015, 5, 24661-24669.	1.7	39
89	Enhanced adsorption capacity and selectivity towards strontium ions in aqueous systems by sulfonation of CO ₂ derived porous carbon. RSC Advances, 2017, 7, 54546-54553.	1.7	39
90	Ni-exsolved La1-xCaxNiO3 perovskites for improving CO2 methanation. Chemical Engineering Journal, 2021, 412, 127557.	6.6	39

#	Article	IF	Citations
91	Probability distribution function and multiscaling properties in the Korean stock market. Physica A: Statistical Mechanics and Its Applications, 2007, 383, 65-70.	1.2	38
92	Boron-doped electrocatalysts derived from carbon dioxide. Journal of Materials Chemistry A, 2013, 1, 8665.	5.2	38
93	Ni-Fe-Al mixed oxide for combined dry reforming and decomposition of methane with CO2 utilization. Catalysis Today, 2021, 368, 86-95.	2.2	36
94	Formation of Graphene Oxide Nanocomposites from Carbon Dioxide Using Ammonia Borane. Journal of Physical Chemistry C, 2012, 116, 2639-2644.	1.5	35
95	Adsorptive removal of cesium by electrospun nanofibers embedded with potassium copper hexacyanoferrate. Separation and Purification Technology, 2021, 255, 117745.	3.9	35
96	Difference points in extractive and reactive cascades. II $\hat{a} \in$ "Generating design alternatives by the lever rule for reactive systems. Chemical Engineering Science, 2000, 55, 3161-3174.	1.9	33
97	An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: application to GaN nanowires. Nanotechnology, 2011, 22, 105704.	1.3	33
98	A high-strength polyvinyl alcohol hydrogel membrane crosslinked by sulfosuccinic acid for strontium removal via filtration. Journal of Environmental Chemical Engineering, 2019, 7, 102824.	3.3	33
99	Raman Spectroscopic Studies of Surfactant Effect on the Water Structure around Hydrate Guest Molecules. Journal of Physical Chemistry Letters, 2010, 1, 2676-2679.	2.1	32
100	Random matrix theory and cross-correlations in global financial indices and local stock market indices. Journal of the Korean Physical Society, 2013, 62, 569-574.	0.3	32
101	Supercapacitor Electrodes Derived from Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2014, 2, 735-740.	3.2	32
102	Levulinate production from algal cell hydrolysis using in situ transesterification. Algal Research, 2017, 26, 431-435.	2.4	32
103	Solvo-thermal in situ transesterification of wet spent coffee grounds for the production of biodiesel. Bioresource Technology, 2018, 249, 494-500.	4.8	32
104	One-pot conversion of carbon dioxide to CNT-grafted graphene bifunctional for sulfur cathode and thin interlayer of Liâ€"S battery. Electrochimica Acta, 2020, 330, 135264.	2.6	32
105	Transformation of carbon dioxide into carbon nanotubes for enhanced ion transport and energy storage. Nanoscale, 2020, 12, 7822-7833.	2.8	32
106	Macroscopic Investigation of Water Volume Effects on Interfacial Dynamic Behaviors between Clathrate Hydrate and Water. Langmuir, 2013, 29, 5793-5800.	1.6	31
107	State and Network Structures of Stock Markets Around the Global Financial Crisis. Computational Economics, 2018, 51, 195-210.	1.5	31
108	Role of transition metal in perovskites for enhancing selectivity of methane to syngas. International Journal of Hydrogen Energy, 2018, 43, 20580-20590.	3.8	29

#	Article	IF	Citations
109	Effect of Hydrophobic Silica Nanoparticles on the Kinetics of Methane Hydrate Formation in Water-in-Oil Emulsions. Energy & Samp; Fuels, 2019, 33, 523-530.	2.5	29
110	Molecular Dynamics Simulations of Hydrophobic Nanoparticle Effects on Gas Hydrate Formation. Journal of Physical Chemistry C, 2020, 124, 4162-4171.	1.5	29
111	Circumventing an Azeotrope in Reactive Distillation. Industrial & Engineering Chemistry Research, 2000, 39, 1061-1063.	1.8	28
112	Hydrophobic Particle Effects on Hydrate Crystal Growth at the Water–Oil Interface. Chemistry - an Asian Journal, 2014, 9, 261-267.	1.7	28
113	Clathrate nanocage reactor for the decomposition of greenhouse gas. Chemical Engineering Journal, 2019, 359, 1629-1634.	6.6	28
114	Effective removal of cesium from wastewater via adsorptive filtration with potassium copper hexacyanoferrate-immobilized and polyethyleneimine-grafted graphene oxide. Chemosphere, 2020, 250, 126262.	4.2	28
115	Confined tetrahydrofuran in a superabsorbent polymer for sustainable methane storage in clathrate hydrates. Chemical Engineering Journal, 2021, 411, 128512.	6.6	28
116	Fundamental role of Fe–N–C active sites in a CO ₂ -derived ultra-porous carbon electrode for inhibiting shuttle phenomena in Li–S batteries. Journal of Materials Chemistry A, 2021, 9, 23660-23674.	5.2	28
117	Low-frequency noise in strained SiGe core-shell nanowire p-channel field effect transistors. Applied Physics Letters, 2010, 97, 073505.	1.5	27
118	Effects of boron oxidation state on electrocatalytic activity of carbons synthesized from CO ₂ . Journal of Materials Chemistry A, 2015, 3, 5843-5849.	5.2	27
119	Rheology of Hydrate-Forming Emulsions Stabilized by Surfactant and Hydrophobic Silica Nanoparticles. Energy & Supply Supp	2.5	27
120	Facile one-pot synthesis of dual-cation incorporated titanosilicate and its deposition to membrane surfaces for simultaneous removal of Cs+ and Sr2+. Applied Surface Science, 2019, 493, 165-176.	3.1	27
121	Low-temperature CO2 hydrogenation to CO on Ni-incorporated LaCoO3 perovskite catalysts. International Journal of Hydrogen Energy, 2021, 46, 15497-15506.	3.8	27
122	Fundamental Aspects of Enhancing Low-Temperature CO ₂ Splitting to CO on a Double La ₂ NiFeO ₆ Perovskite. ACS Catalysis, 2021, 11, 12220-12231.	5.5	27
123	Catalyst-free production of alkyl esters from microalgae via combined wet in situ transesterification and hydrothermal liquefaction (iTHL). Bioresource Technology, 2017, 244, 423-432.	4.8	26
124	Cobalt oxide-porous carbon composite derived from CO2 for the enhanced performance of lithium-ion battery. Journal of CO2 Utilization, 2019, 30, 28-37.	3.3	26
125	Mesoporous Fe ₂ O ₃ â€"CeO ₂ â€"Al ₂ O ₃ Oxygen Carrier for Chemical Looping Dry Reforming with Subsequent Water Splitting. Industrial & Description of Chemistry Research, 2020, 59, 15912-15920.	1.8	26
126	Rapid Formation of Hydrogen-Enriched Hydrocarbon Gas Hydrates under Static Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 8414-8424.	3.2	26

#	Article	IF	Citations
127	Complex networks in a stock market. Computer Physics Communications, 2007, 177, 186.	3.0	25
128	In-situ boron and nitrogen doping in flue gas derived carbon materials for enhanced oxygen reduction reaction. Journal of CO2 Utilization, 2017, 20, 73-80.	3.3	25
129	Amino-functionalized magnetic chitosan beads to enhance immobilization of potassium copper hexacyanoferrate for selective Cs ⁺ removal and facile recovery. RSC Advances, 2019, 9, 1106-1114.	1.7	25
130	Excess Gibbs Potential Model for Multicomponent Hydrogen Clathrates. Journal of Physical Chemistry B, 2006, 110, 26122-26128.	1.2	23
131	Feasible products in complex batch reactive distillation. AICHE Journal, 2006, 52, 1790-1805.	1.8	23
132	Effect of Composition on Dehydrogenation of Mesoporous Silica/Ammonia Borane Nanocomposites. Industrial & Engineering Chemistry Research, 2011, 50, 10024-10028.	1.8	23
133	Optimization of variables affecting the direct transesterification of wet biomass from Nannochloropsis oceanica using ionic liquid as a co-solvent. Bioprocess and Biosystems Engineering, 2015, 38, 981-987.	1.7	23
134	Recoverable magnetic nanoparticles as hydrate inhibitors. Chemical Engineering Journal, 2020, 389, 124461.	6.6	23
135	Feasible products in batch reactive distillation. AICHE Journal, 2003, 49, 3161-3172.	1.8	22
136	Analysis of charge sensitivity and low frequency noise limitation in silicon nanowire sensors. Journal of Applied Physics, 2010, 107, 044501.	1.1	22
137	Electrocatalytic Activity of BN Codoped Graphene Oxide Derived from Carbon Dioxide. Journal of Physical Chemistry C, 2013, 117, 24167-24173.	1.5	22
138	Equilibria of cyclopentane hydrates with varying HLB numbers of sorbitan monoesters in water-in-oil emulsions. Fluid Phase Equilibria, 2016, 413, 41-47.	1.4	22
139	Immobilization of potassium copper hexacyanoferrate in doubly crosslinked magnetic polymer bead for highly effective Cs+ removal and facile recovery. Journal of Industrial and Engineering Chemistry, 2018, 68, 48-56.	2.9	22
140	Spent coffee derived hierarchical porous carbon and its application for energy storage. Journal of Porous Materials, 2020, 27, 451-463.	1.3	22
141	Inhibition effects of activated carbon particles on gas hydrate formation at oil–water interfaces. RSC Advances, 2015, 5, 58813-58820.	1.7	21
142	On the Performance of Beam Division Nonorthogonal Multiple Access for FDD-Based Large-Scale Multi-User MIMO Systems. IEEE Transactions on Wireless Communications, 2017, 16, 5077-5089.	6.1	21
143	Plastic waste residue-derived boron and nitrogen co-doped porous hybrid carbon for a modified separator of a lithium sulfur battery. Electrochimica Acta, 2021, 380, 138243.	2.6	21
144	Solubility of Sodium Dodecyl Sulfate near Propane and Carbon Dioxide Hydrate-Forming Conditions. Journal of Chemical & Data, 2007, 52, 2480-2483.	1.0	20

#	Article	IF	CITATIONS
145	Adsorption of Gemini surfactants onto clathrate hydrates. Journal of Colloid and Interface Science, 2013, 412, 1-6.	5.0	20
146	Anti-Adhesive Behaviors between Solid Hydrate and Liquid Aqueous Phase Induced by Hydrophobic Silica Nanoparticles. Langmuir, 2016, 32, 9513-9522.	1.6	20
147	A non-catalytic, supercritical methanol route for effective deacidification of naphthenic acids. Fuel, 2016, 182, 650-659.	3.4	20
148	CO ₂ -Derived Synthesis of Hierarchical Porous Carbon Cathode and Free-Standing N-Rich Carbon Interlayer Applied for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 5247-5259.	2.5	20
149	Feasibility of Continuous Reactive Distillation with Azeotropic Mixtures. Industrial & Engineering Chemistry Research, 2004, 43, 3758-3769.	1.8	19
150	Prediction of Hydrogen Hydrate Equilibrium by Integrating ab Initio Calculations with Statistical Thermodynamics. Journal of Physical Chemistry B, 2006, 110, 2332-2337.	1.2	19
151	Power law in firms bankruptcy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 361, 6-8.	0.9	19
152	Effects of Salt on the Crystal Growth and Adhesion Force of Clathrate Hydrates. Energy & Ener	2.5	19
153	Rapid Clathrate Hydrate Formation Using a Heavy Guest Molecule with Sodium Dodecyl Sulfate. Industrial & Dodecyl Sulfate.	1.8	19
154	Enhanced electrocatalytic reduction of oxygen at CO2-derived Fe N B-doped porous carbon. Journal of CO2 Utilization, 2018, 26, 28-35.	3.3	19
155	Nitrogen Recovery via Aquaponics–Bioponics: Engineering Considerations and Perspectives. ACS ES&T Engineering, 2021, 1, 326-339.	3.7	19
156	Enhanced Morphological Preservation and Redox Activity in Al-Incorporated NiFe ₂ O ₄ for Chemical Looping Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2021, 9, 14800-14810.	3.2	19
157	Shortcut method for kinetically controlled reactive distillation systems. AICHE Journal, 2003, 49, 1471-1487.	1.8	18
158	Inhibition Effect of Surfactants on CO2 Enclathration with Cyclopentane in an Unstirred Batch Reactor. Industrial & Engineering Chemistry Research, 2009, 48, 4703-4709.	1.8	18
159	Progress and prospects in thermolytic dehydrogenation of ammonia borane for mobile applications. Korean Journal of Chemical Engineering, 2012, 29, 421-431.	1.2	18
160	Effect of Molecular Nitrogen on Multiple Hydrogen Occupancy in Clathrate Hydrates. Journal of Physical Chemistry C, 2014, 118, 20203-20208.	1.5	18
161	Graphical Design of Integrated Reaction and Distillation in Dividing Wall Columns. Industrial & Columns. Industrial & Columns	1.8	18
162	Carbon dioxide conversion into boron/nitrogen dual-doped carbon as an electrode material for oxygen reduction reaction. Electrochimica Acta, 2016, 210, 743-753.	2.6	18

#	Article	IF	CITATIONS
163	Reverse Water–Gas Shift Chemical Looping Using a Core–Shell Structured Perovskite Oxygen Carrier. Energies, 2020, 13, 5324.	1.6	18
164	One-pot selective production of levulinic acid and formic acid from spent coffee grounds in a catalyst-free biphasic system. Bioresource Technology, 2020, 303, 122898.	4.8	18
165	Electrochemically-assisted removal of cadmium ions by redox active Cu-based metal-organic framework. Chemical Engineering Journal, 2021, 421, 129765.	6.6	18
166	Feasibility Studies on Quaternary Reactive Distillation Systems. Industrial & Engineering Chemistry Research, 2002, 41, 4632-4642.	1.8	17
167	Feasible products in batch reactive extractive distillation. AICHE Journal, 2004, 50, 1484-1492.	1.8	17
168	DataNet: An emerging cyberinfrastructure for sharing, reusing and preserving digital data for scientific discovery and learning. AICHE Journal, 2009, 55, 2757-2764.	1.8	17
169	Structural changes in the minimal spanning tree and the hierarchical network in the Korean stock market around the global financial crisis. Journal of the Korean Physical Society, 2015, 66, 1153-1159.	0.3	17
170	Efficient solvothermal wet in situ transesterification of Nannochloropsis gaditana for biodiesel production. Bioprocess and Biosystems Engineering, 2017, 40, 723-730.	1.7	17
171	Feasibility of a Reactive Distillation Column with Ternary Mixtures. Industrial & Engineering Chemistry Research, 2001, 40, 2714-2728.	1.8	16
172	COMPLEX NETWORKS AND MINIMAL SPANNING TREES IN INTERNATIONAL TRADE NETWORK. International Journal of Modern Physics Conference Series, 2012, 16, 51-60.	0.7	16
173	Thermodynamic and Spectroscopic Identification of Methane Inclusion in the Binary Heterocyclic Compound Hydrates. Journal of Physical Chemistry C, 2013, 117, 23515-23521.	1.5	16
174	Future internets escape the simulator. Communications of the ACM, 2015, 58, 78-89.	3.3	16
175	Multiple transesterifications in a reactive dividing wall column integrated with a heat pump. Korean Journal of Chemical Engineering, 2019, 36, 954-964.	1.2	16
176	Electrosorption of cadmium ions in aqueous solutions using a copper-gallate metal-organic framework. Chemosphere, 2022, 286, 131853.	4.2	16
177	Visualization of stage calculations in ternary reacting mixtures. Computers and Chemical Engineering, 2000, 24, 639-644.	2.0	15
178	Nitric oxide decreases surfactant protein gene expression in primary cultures of type II pneumocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L950-L957.	1.3	15
179	Adsorption of sodium dodecyl sulfate onto clathrate hydrates in the presence of salt. Journal of Colloid and Interface Science, 2012, 386, 333-337.	5.0	15
180	Impact of trap localization on low-frequency noise in nanoscale device. Journal of Applied Physics, 2014, 115, 194501.	1.1	15

#	Article	IF	CITATIONS
181	Tuning Behaviors of Methane Inclusion in Isoxazole Clathrate Hydrates. Journal of Chemical & Engineering Data, 2015, 60, 278-283.	1.0	15
182	Hierarchically porous heteroatom-doped carbon derived from flue gases for electrochemical energy storage. Journal of CO2 Utilization, 2016, 16, 420-427.	3.3	15
183	Self-Powered Autonomous Wireless Sensor Node by Using Silicon-Based 3D Thermoelectric Energy Generator for Environmental Monitoring Application. Energies, 2020, 13, 674.	1.6	15
184	Low temperature CO2 conversion facilitated by the preserved morphology of metal oxide-perovskite composite. Chemical Engineering Journal, 2022, 437, 135151.	6.6	15
185	Carbon dioxide splitting and hydrogen production using a chemical looping concept: A review. Journal of CO2 Utilization, 2022, 63, 102139.	3.3	15
186	Methane Enclathration with Sodium Dodecyl Sulfate: Effect of Cyclopentane and Two Salts on Formation Kinetics. Industrial & Engineering Chemistry Research, 2010, 49, 8267-8270.	1.8	14
187	Carbon Dioxide-Facilitated Low-Temperature Hydrogen Desorption from Polyaminoborane. Journal of Physical Chemistry C, 2013, 117, 3799-3803.	1.5	14
188	Feasibility Evaluation of Quinary Heterogeneous Reactive Extractive Distillation. Industrial & Engineering Chemistry Research, 2014, 53, 12387-12398.	1.8	14
189	Energy-Efficient Reactive Dividing Wall Column for Simultaneous Esterification of <i>n</i> -Amyl Alcohol and <i>n</i> -Hexanol. Industrial & Engineering Chemistry Research, 2019, 58, 8206-8219.	1.8	14
190	Synthesis of distillation-based processes for non-ideal mixtures. Computers and Chemical Engineering, 2000, 24, 2043-2054.	2.0	13
191	Dynamic of consumer groups and response of commodity markets by principal component analysis. Physica A: Statistical Mechanics and Its Applications, 2017, 482, 337-344.	1.2	13
192	Simulated-Sunlight-Driven Cell Lysis of Magnetophoretically Separated Microalgae Using ZnFe ₂ O ₄ Octahedrons. Industrial & Engineering Chemistry Research, 2018, 57, 1655-1661.	1.8	13
193	Y2O3-Inserted Co-Pd/zeolite catalysts for reductive amination of polypropylene glycol. Applied Catalysis A: General, 2018, 568, 114-122.	2.2	13
194	Agent-Based Models in Social Physics. Journal of the Korean Physical Society, 2018, 72, 1272-1280.	0.3	13
195	Enhanced Energy Savings from Simultaneous Triple Esterification of C4 <i>â€"</i> C6 Alcohols in a Single Reactive Distillation Column. Industrial & Engineering Chemistry Research, 2020, 59, 1966-1978.	1.8	13
196	Hydrate seeding effect on the metastability of CH4 hydrate. Korean Journal of Chemical Engineering, 2020, 37, 341-349.	1.2	13
197	Electrostatic self-assembly of 2-dimensional MXene-wrapped sulfur composites for enhancing cycle performance of lithium–sulfur batteries. Electrochimica Acta, 2022, 402, 139539.	2.6	13
198	Exploring tuning phenomena of THF-H2 hydrates via molecular dynamics simulations. Journal of Molecular Liquids, 2022, 349, 118490.	2.3	13

#	Article	IF	CITATIONS
199	Solubility of CO ₂ , N ₂ , and CO ₂ + N ₂ Gas Mixtures in Isooctane. Journal of Chemical & Samp; Engineering Data, 2008, 53, 1321-1324.	1.0	12
200	Calorimetric and Microscopic Studies on the Noncatalytic Hydrothermolysis of Ammonia Borane. Industrial & Engineering Chemistry Research, 2011, 50, 10407-10413.	1.8	12
201	Wealth dynamics in world trade. Computer Physics Communications, 2011, 182, 216-218.	3.0	12
202	Rapid release of 1.5 equivalents of hydrogen from CO2-treated ammonia borane. International Journal of Hydrogen Energy, 2012, 37, 3344-3349.	3.8	12
203	Inclusion of thiophene as a co-guest in a structure II hydrate with methane gas. RSC Advances, 2014, 4, 26176.	1.7	12
204	Boron–manganese–carbon nanocomposites synthesized from CO2 for electrode applications in both supercapacitors and fuel cells. RSC Advances, 2016, 6, 54889-54897.	1.7	12
205	State and group dynamics of world stock market by principal component analysis. Physica A: Statistical Mechanics and Its Applications, 2016, 450, 85-94.	1.2	12
206	Evaluating isotherm models for the prediction of flue gas adsorption equilibrium and dynamics. Korean Journal of Chemical Engineering, 2018, 35, 734-743.	1.2	12
207	Entrainer effect of n-hexanol reactant on coproducing n-butyl and n-hexyl acetate in energy-efficient reactive distillation. Chemical Engineering and Processing: Process Intensification, 2020, 154, 108048.	1.8	12
208	NetServ., 2009,,.		12
209	Controlled template removal from nanocast La0.8Sr0.2FeO3 for enhanced CO2 conversion by reverse water gas shift chemical looping. Journal of CO2 Utilization, 2022, 56, 101845.	3.3	12
210	Power law of quiet time distribution in the Korean stock-market. Physica A: Statistical Mechanics and Its Applications, 2007, 377, 576-582.	1.2	11
211	The persistence probability and the price–price correlation functions in the Korean stock market. Computer Physics Communications, 2011, 182, 243-244.	3.0	11
212	CCNxServ: Dynamic service scalability in information-centric networks., 2012,,.		11
213	Scaling of nestedness in complex networks. Journal of the Korean Physical Society, 2012, 60, 648-656.	0.3	11
214	Concurrent Production of Carbon Monoxide and Manganese(II) Oxide through the Reaction of Carbon Dioxide with Manganese. ACS Sustainable Chemistry and Engineering, 2014, 2, 1503-1509.	3.2	11
215	Formation of Hollow Co ₃ O ₄ Nanoparticles on Nitrogen–doped Porous Carbons for Highly Capacitive Performance. ChemistrySelect, 2016, 1, 560-566.	0.7	11
216	Modeling and experiment of gas desorption of bubble column with an external loop in the heterogeneous flow regime. Korean Journal of Chemical Engineering, 2019, 36, 1680-1687.	1.2	11

#	Article	IF	Citations
217	Effect of Naphthenate Formation on the Anti-Adhesive Behavior of Clathrate Hydrates at a Water–Oil Interface. Industrial & Engineering Chemistry Research, 2019, 58, 5064-5070.	1.8	11
218	Patterns of international trades and nation \hat{A}_i ?s wealth. Journal of the Korean Physical Society, 2010, 56, 998-1002.	0.3	11
219	Energy efficient design through structural variations of complex heat-integrated azeotropic distillation of acetone-chloroform-water system. Journal of Industrial and Engineering Chemistry, 2022, 109, 306-319.	2.9	11
220	Extreme conditions in binary reactive distillation. AICHE Journal, 2000, 46, 2225-2236.	1.8	10
221	Fluctuations of trading volume in a stock market. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 863-868.	1.2	10
222	Effect of Sodium Dodecyl Sulfate on the Supercooling Point of Ice and Clathrate Hydrates. Energy & Ene	2.5	10
223	Efficient pressure swing adsorption for improving H2 recovery in precombustion CO2 capture. Korean Journal of Chemical Engineering, 2017, 34, 1763-1773.	1.2	10
224	Systemic risk and hierarchical transitions of financial networks. Chaos, 2017, 27, 063107.	1.0	10
225	Effect of pH and Concentrated Salt on the Droplet Size and Mass Transfer Coefficient in a Stirred Liquid–Liquid Reactor. Industrial & Engineering Chemistry Research, 2018, 57, 2310-2321.	1.8	10
226	Integrated reaction and separation in a continuous middle vessel column for enhancing indirect hydration of cyclohexene to cyclohexanol. Chemical Engineering and Processing: Process Intensification, 2018, 123, 249-257.	1.8	10
227	Electrically Conductive Oxidation-Resistant Boron-Coated Carbon Nanotubes Derived from Atmospheric CO ₂ for Use at High Temperature. ACS Applied Nano Materials, 2020, 3, 8592-8597.	2.4	10
228	Immobilization of KTS-3 on an electrospun fiber membrane for efficient removal of Cs+ and Sr2+. Journal of Environmental Chemical Engineering, 2021, 9, 105991.	3.3	10
229	Coupled effect of TiO2-x and N defects in pyrolytic waste plastics-derived carbon on anchoring polysulfides in the electrode of Li-S batteries. Electrochimica Acta, 2022, 408, 139924.	2.6	10
230	TiO ₂ /Carbon Nanosheets Derived from Delaminated Ti ₃ C ₂ â€MXenes as an Ultralongâ€Lifespan Anode Material in Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2022, 9,	1.9	10
231	\hat{l}^2 2 adrenergic agonists in acute lung injury? The heart of the matter. Critical Care, 2009, 13, 1011.	2.5	9
232	Detrended fluctuation analysis and Kolmogorov–Sinai entropy of electroencephalogram signals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 2542-2545.	0.9	9
233	Threshold network of a financial market using the P-value of correlation coefficients. Journal of the Korean Physical Society, 2015, 66, 1802-1808.	0.3	9
234	Enhanced oxygen reduction from the insertion of cobalt into nitrogen-doped porous carbons. RSC Advances, 2015, 5, 87971-87980.	1.7	9

#	Article	IF	Citations
235	Enhanced mass transfer from the installation of a sieve tray subject to the variation of liquid heights and flow regimes in a bubble column. Chemical Engineering Research and Design, 2018, 136, 654-662.	2.7	9
236	Visualized Pulverization via Ex Situ Analyses: Nickel Sulfide Anode Caged in a Hierarchical Carbon. Journal of the Electrochemical Society, 2019, 166, A838-A847.	1.3	9
237	Analysis of single-layered multiconductor transmission lines using the Fourier transform and mode-matching techniques. Microwave and Optical Technology Letters, 2003, 36, 315-317.	0.9	8
238	Rapid generation of composition profiles for reactive and extractive cascades. AICHE Journal, 2005, 51, 922-930.	1.8	8
239	Degradation pattern of SnO ₂ nanowire field effect transistors. Nanotechnology, 2010, 21, 485201.	1.3	8
240	Short channel mobility analysis of SiGe nanowire p-type field effect transistors: Origins of the strain induced performance improvement. Applied Physics Letters, 2012, 101, 143502.	1.5	8
241	Production of nitrogen-doped graphite from carbon dioxide using polyaminoborane. RSC Advances, 2013, 3, 25752.	1.7	8
242	Electrical properties of high density arrays of silicon nanowire field effect transistors. Journal of Applied Physics, 2013, 114, 144503.	1.1	8
243	Dynamic modeling of fixed-bed adsorption of flue gas using a variable mass transfer model. Korean Journal of Chemical Engineering, 2016, 33, 438-447.	1.2	8
244	Super steep-switching (SS \hat{a} % \hat{a} mV/decade) phase-FinFET with Pb(Zr0.52Ti0.48)O3 threshold switching device. Applied Physics Letters, 2018, 113, .	1.5	8
245	Enhanced ethyl levulinate production from citrus peels through an in-situ hydrothermal reaction. Bioresource Technology Reports, 2018, 2, 84-87.	1.5	8
246	Effects of Large Guest Molecular Structure on Thermal Expansion Behaviors in Binary (C4H8O + CH4) Clathrate Hydrates. Journal of Physical Chemistry C, 2019, 123, 20705-20714.	1.5	8
247	Prediction of Main Regime Transition with Variations of Gas and Liquid Phases in a Bubble Column. ACS Omega, 2019, 4, 1329-1343.	1.6	8
248	Avalanche size distribution of an integrate-and-fire neural model on complex networks. Chaos, 2020, 30, 063118.	1.0	8
249	Unfavorable energy integration of reactive dividing wall column for simultaneous esterification reactions. Korean Journal of Chemical Engineering, 2021, 38, 195-203.	1.2	8
250	Sustainable Hydrogen Production from Water Splitting on a Co ₃ O ₄ @LaCoO ₃ Core–Shell Redox Catalyst. ACS Applied Energy Materials, 2022, 5, 8437-8442.	2.5	8
251	Reversible electro-mediated cesium ion removal using a zeolitic imidazolate framework derived zinc hexacyanoferrate composite. Chemical Engineering Journal, 2022, 450, 138029.	6.6	8
252	Estimation of Still Trajectory for Batch Reactive Distillation Systems. Industrial & Engineering Chemistry Research, 2008, 47, 3930-3936.	1.8	7

#	Article	IF	CITATIONS
253	Energy-Efficient Design of a Novel Double Annular Separation Column Using Pinch Pressure. Industrial & Design of a Novel Double Annular Separation Column Using Pinch Pressure.	1.8	7
254	Structure and dynamics of financial networks by feature ranking method. Scientific Reports, 2021, 11, 17618.	1.6	7
255	Asymmetric Network Properties of Bipartite Ecological Networks. Journal of the Korean Physical Society, 2011, 58, 851-854.	0.3	7
256	Temperature driven internal heat integration in an energy-efficient partial double annular column. Korean Journal of Chemical Engineering, 2022, 39, 263-274.	1.2	7
257	Enhanced energy efficiency and reduced CO2 emissions by hybrid heat integration in dimethyl carbonate production systems. Separation and Purification Technology, 2022, 287, 120598.	3.9	7
258	Application of adaptive control with rule-bases to cell recycled continuous bioreactor for ethanol production. Korean Journal of Chemical Engineering, 1994, 11, 119-126.	1.2	6
259	Increased pulmonary blood flow does not alter surfactant protein gene expression in lambs within the first week of life. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L1237-L1243.	1.3	6
260	Polymer structure modifications for immersion leaching control., 2007,,.		6
261	Interspecific Competition Underlying Mutualistic Networks. Physical Review Letters, 2012, 108, 108701.	2.9	6
262	Self-organized criticality of a simple integrate-and-fire neural model. Journal of the Korean Physical Society, 2012, 60, 657-659.	0.3	6
263	CFD-aided design of internally heat-integrated pressure-swing distillation for ternary azeotropic separation constrained by pinch pressure. Applied Thermal Engineering, 2021, 195, 117198.	3.0	6
264	Synthesis of heatâ€integrated pressureâ€swing azeotropic distillation using a graphical pinch analysis. AICHE Journal, 2022, 68, e17476.	1.8	6
265	Improved H ₂ utilization by Pd doping in cobalt catalysts for reductive amination of polypropylene glycol. RSC Advances, 2020, 10, 45159-45169.	1.7	6
266	Temperature-swing transesterification for the coproduction of biodiesel and ethyl levulinate from spent coffee grounds. Korean Journal of Chemical Engineering, 2022, 39, 2754-2763.	1.2	6
267	Dimensional crossover of diffusion-limited reaction in a quasi-one-dimensional lattice. Journal of Chemical Physics, 2000, 113, 9702-9705.	1.2	5
268	Rapid Assembly of Colloidal Monolayer for the Synthesis of Surface Anisotropic Particles. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2392-2397.	4.0	5
269	Carbon dioxide injection method for enhancing hydrogenotrophic denitrification of secondary wastewater effluent in fixed bed reactor. Biotechnology and Bioprocess Engineering, 2013, 18, 326-332.	1.4	5
270	Applications of Complex Networks on Analysis of World Trade Network. Journal of Physics: Conference Series, 2013, 410, 012063.	0.3	5

#	Article	IF	CITATIONS
271	Finding 9-1-1 callers in tall buildings. , 2014, , .		5
272	Is a Part Better than the Whole for Cell-based Therapy for Acute Respiratory Distress Syndrome?. Anesthesiology, 2019, 130, 683-685.	1.3	5
273	Temperature―and Pressureâ€induced Structural Transition of Binary Clathrate Hydrates. ChemPhysChem, 2019, 20, 429-435.	1.0	5
274	Production of levulinic acid from wet microalgae in a biphasic one-pot reaction process. Korean Journal of Chemical Engineering, 2020, 37, 1933-1941.	1.2	5
275	Effect of multiple impeller designs and configurations on the droplet size and uniformity in a 100 L scale stirred tank. Korean Journal of Chemical Engineering, 2021, 38, 1348-1357.	1.2	5
276	Application of principal component analysis on temporal evolution of COVID-19. PLoS ONE, 2021, 16, e0260899.	1.1	5
277	Highly active oxygen reduction reaction on Fe-nanoclustered hierarchical porous carbon derived from CO ₂ . Chemical Communications, 2021, 57, 13538-13541.	2.2	5
278	Modified polymer architecture for immersion lithography. , 2007, , .		4
279	Efficient in situ drying of low rank coal in a pressurized down-flow flash dryer. Korean Journal of Chemical Engineering, 2016, 33, 3401-3406.	1.2	4
280	Changes of hierarchical network in local and world stock market. Journal of the Korean Physical Society, 2017, 71, 444-451.	0.3	4
281	Thermal expansivity of \hat{I}^3 -irradiated clathrate hydrate with intracavity conformational change. Chemical Physics Letters, 2018, 706, 14-18.	1.2	4
282	Effects of Intraday Patterns on a Time Series Analysis of the Korean Stock Market Index. Journal of the Korean Physical Society, 2011, 58, 396-399.	0.3	4
283	Parameter investigation of PEB sensitivity. , 2006, 6153, 988.		3
284	Determination of Reference Chemical Potential Using Molecular Dynamics Simulations. Journal of Thermodynamics, 2010, 2010, 1-5.	0.8	3
285	The role of extracellular polymeric substances in reducing copper inhibition to nitrification in activated sludge. Biotechnology and Bioprocess Engineering, 2016, 21, 683-688.	1.4	3
286	Determination of reference enthalpies and thermal expansivity using molecular dynamic simulations in the distortion model of gas hydrates. Korean Journal of Chemical Engineering, 2016, 33, 3216-3221.	1.2	3
287	Macrophage-derived microvesicles' pathogenic role in acute lung injury. Thorax, 2016, 71, 975-976.	2.7	3
288	Constructive Multi-User Interference for Symbol-Level Link Adaptation: MMSE Approach., 2017,,.		3

#	Article	IF	CITATIONS
289	Depolymerization of polystyrene over Mgx-Aly-O catalysts derived from hydrotalcites: Effect of Mg/Al ratio on the basicity and catalytic performance. Molecular Catalysis, 2021, 506, 111546.	1.0	3
290	Membrane Diffuser Coupled Bioreactor for Methanotrophic Denitrification under Non-aerated Condition: Suggestion as a Post-denitrification Option. Environmental Engineering Research, 2014, 19, 75-81.	1.5	3
291	A Miniature Condenser Microphone for Portable Terminals Applications. , 2007, , .		2
292	AVALANCHES OF BAK–SNEPPEN COEVOLUTION MODEL ON DIRECTED SCALE-FREE NETWORK. Fractals, 2009, 17, 233-237.	1.8	2
293	Coevolutionary extremal dynamics on gasket fractal. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 4260-4263.	0.9	2
294	Impact of compatibility on the organization of mutualistic networks. Physical Review E, 2013, 88, 022804.	0.8	2
295	Financial states of world financial and commodities markets around sovereign debt crisis. Journal of the Korean Physical Society, 2017, 71, 733-739.	0.3	2
296	Fractality and Multifractality in a Stock Market's Nonstationary Financial Time Series. Journal of the Korean Physical Society, 2020, 77, 186-196.	0.3	2
297	Persistent and Survival Properties in a Stock Market Index. Journal of the Korean Physical Society, 2010, 56, 940-942.	0.3	2
298	Effects of Propylene Oxide End Capping on Amination of Polyalkylene Glycols. ACS Omega, 2020, 5, 26545-26550.	1.6	2
299	Catalytic pyrolysis of HDPE over WOx/Al2O3: Effect of tungsten content on the acidity and catalytic performance. Molecular Catalysis, 2022, 528, 112439.	1.0	2
300	Diffusion-limited reaction in the presence of random fields and transition rates. Journal of Chemical Physics, 2002, 117, 7864-7871.	1.2	1
301	Intensification of Reaction and V-L Separation in Batch Systems. ACS Symposium Series, 2005, , 393-405.	0.5	1
302	Protein permeability in lung injury: now in real time again?. Journal of Applied Physiology, 2007, 102, 508-509.	1,2	1
303	Reply to Comments by JN. Jaubert and S. Vitu on J. Chem. Eng. Data 2008, 53, 1321â^'1324. Journal of Chemical & Chemica	1.0	1
304	Advances in Gas Hydrate Thermodynamics and Transport Properties. Journal of Thermodynamics, 2010, 2010, 1-2.	0.8	1
305	Experimental analysis of surface roughness scattering in FinFET devices. , 2010, , .		1
306	EFFECTS OF INTRADAY PATTERNS ON ANALYSIS OF STOCK MARKET INDEX AND TRADING VOLUME. International Journal of Modern Physics Conference Series, 2012, 16, 41-50.	0.7	1

#	Article	IF	Citations
307	Feasible Design of Multi-component Heterogeneous Reactive Distillation. Computer Aided Chemical Engineering, 2014, 34, 351-356.	0.3	1
308	Competition-induced increase of species abundance in mutualistic networks. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 033502.	0.9	1
309	Chaotic Dynamics of a Simple Population Model under the Allee Effect. Journal of the Korean Physical Society, 2020, 76, 533-536.	0.3	1
310	Spatial Movement Patterns and Local Co-Occurrence of Nutria Individuals in Association with Habitats Using Geo-Self-Organizing Map (Geo-SOM). Biology, 2021, 10, 598.	1.3	1
311	Invasion dynamics of a population growth model with the Allee effect in a one-dimensional patchy structure. Journal of the Korean Physical Society, 2021, 79, 499-503.	0.3	1
312	Corrigendum to "Electrochemically-assisted removal of cadmium ions by redox active Cu-based metal–organic framework―[Chem. Eng. J. 421 (2021) 129765]. Chemical Engineering Journal, 2021, 426, 130667.	6.6	1
313	Structure of Mutualistic Complex Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 954-959.	0.2	1
314	Visualization of Stage Calculations in Quaternary Reactive Distillation with Multiple Reactions. Korean Chemical Engineering Research, 2014, 52, 713-719.	0.2	1
315	Scaling Behaviors of Plant-Pollinator Mutualistic Networks. Journal of the Korean Physical Society, 2008, 53, 3151-3155.	0.3	1
316	Fundamental reaction kinetics of high-pressure reductive amination of polyalkylene glycol. Journal of Industrial and Engineering Chemistry, 2021, 106, 317-317.	2.9	1
317	Enhancement of Cooperation and Reentrant Phase of Prisoner's Dilemma Game on Signed Networks. Entropy, 2022, 24, 144.	1.1	1
318	Stability and selective extinction in complex mutualistic networks. Physical Review E, 2022, 105, 014309.	0.8	1
319	Hyaluronic acid restored protein permeability across injured human lung microvascular endothelial cells. FASEB BioAdvances, 2022, 4, 619-631.	1.3	1
320	Irreversible Sequential Adsorption of Line Segments with Diffusional Relaxation on a One-Dimensional Lattice. AIP Conference Proceedings, 2004, , .	0.3	0
321	The electrical characteristics of high density arrays of silicon nanowire field-effect transistors: Dependence on wire spacing. , 2013, , .		0
322	Weighted Scale-Free Network Properties of Ecological Network. Journal of Physics: Conference Series, 2013, 410, 012067.	0.3	0
323	High-throughput and real-time microalgae monitoring platform using lens-free shadow imaging system (LSIS). , 2015, , .		0
324	Sustainability of religious communities. PLoS ONE, 2021, 16, e0250718.	1.1	0

#	Article	IF	CITATIONS
325	Mesenchymal Stem Cells for Acute Lung Injury. , 2010, , 121-140.		O
326	An Objective Assessment Scale for "Come-to-Sit" Using a Specifically Designed Jacket in Stroke Patients. Annals of Rehabilitation Medicine, 2012, 36, 8.	0.6	0