## **Richard H Kramer**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6585492/publications.pdf Version: 2024-02-01



RICHARD H KRAMER

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Interrogating the function of GABAA receptors in the brain with optogenetic pharmacology. Current Opinion in Pharmacology, 2022, 63, 102198.                                                                                           | 3.5  | 2         |
| 2  | Retinoic acid inhibitors mitigate vision loss in a mouse model of retinal degeneration. Science Advances, 2022, 8, eabm4643.                                                                                                           | 10.3 | 13        |
| 3  | Fluorescent Reporters for Sensing Membrane Potential: Tools for Bioelectricity. Bioelectricity, 2022, 4, 108-116.                                                                                                                      | 1.1  | 3         |
| 4  | Relocation of an Extrasynaptic GABAA Receptor to Inhibitory Synapses Freezes Excitatory Synaptic<br>Strength and Preserves Memory. Neuron, 2021, 109, 123-134.e4.                                                                      | 8.1  | 48        |
| 5  | Cyclodextrinâ€Assisted Delivery of Azobenzene Photoswitches for Uniform and Longâ€Term Restoration of Light Responses in Degenerated Retinas of Blind Mice. Advanced Therapeutics, 2021, 4, 2100127.                                   | 3.2  | 6         |
| 6  | Review and Hypothesis: A Potential Common Link Between Glial Cells, Calcium Changes, Modulation of<br>Synaptic Transmission, Spreading Depression, Migraine, and Epilepsy—H+. Frontiers in Cellular<br>Neuroscience, 2021, 15, 693095. | 3.7  | 4         |
| 7  | Evaluating methods and protocols of ferritin-based magnetogenetics. IScience, 2021, 24, 103094.                                                                                                                                        | 4.1  | 5         |
| 8  | Degeneration-Dependent Retinal Remodeling: Looking for the Molecular Trigger. Frontiers in Neuroscience, 2020, 14, 618019.                                                                                                             | 2.8  | 14        |
| 9  | Local photoreceptor degeneration causes local pathophysiological remodeling of retinal neurons. JCI<br>Insight, 2020, 5, .                                                                                                             | 5.0  | 24        |
| 10 | Controlling Horizontal Cell-Mediated Lateral Inhibition in Transgenic Zebrafish Retina with<br>Chemogenetic Tools. ENeuro, 2020, 7, ENEURO.0022-20.2020.                                                                               | 1.9  | 6         |
| 11 | Parvalbumin interneurons provide spillover to newborn and mature dentate granule cells. ELife, 2020,<br>9, .                                                                                                                           | 6.0  | 18        |
| 12 | Retinoic Acid Induces Hyperactivity, and Blocking Its Receptor Unmasks Light Responses and Augments<br>Vision in Retinal Degeneration. Neuron, 2019, 102, 574-586.e5.                                                                  | 8.1  | 48        |
| 13 | The Bioelectricity Revolution: A Discussion Among the Founding Associate Editors. Bioelectricity, 2019, 1, 8-15.                                                                                                                       | 1.1  | 1         |
| 14 | Localizing Proton-Mediated Inhibitory Feedback at the Retinal Horizontal Cell–Cone Synapse with<br>Genetically-Encoded pH Probes. Journal of Neuroscience, 2019, 39, 651-662.                                                          | 3.6  | 16        |
| 15 | Light-Switchable Ion Channels and Receptors for Optogenetic Interrogation of Neuronal Signaling.<br>Bioconjugate Chemistry, 2018, 29, 861-869.                                                                                         | 3.6  | 9         |
| 16 | Understanding and improving photoâ€control of ion channels in nociceptors with azobenzene<br>photoâ€switches. British Journal of Pharmacology, 2018, 175, 2296-2311.                                                                   | 5.4  | 26        |
| 17 | Design of a Highly Bistable Photoswitchable Tethered Ligand for Rapid and Sustained Manipulation of Neurotransmission. Journal of the American Chemical Society, 2018, 140, 7445-7448.                                                 | 13.7 | 30        |
| 18 | Restoring Vision to the Blind with Chemical Photoswitches. Chemical Reviews, 2018, 118, 10748-10773.                                                                                                                                   | 47.7 | 120       |

**RICHARD H KRAMER** 

| #  | Article                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Manipulating midbrain dopamine neurons and reward-related behaviors with light-controllable nicotinic acetylcholine receptors. ELife, 2018, 7, .                  | 6.0  | 43        |
| 20 | Restoring visual function to the blind retina with a potent, safe and long-lasting photoswitch.<br>Scientific Reports, 2017, 7, 45487.                            | 3.3  | 39        |
| 21 | Restoration of patterned vision with an engineered photoactivatable G protein-coupled receptor.<br>Nature Communications, 2017, 8, 1862.                          | 12.8 | 65        |
| 22 | Photopharmacological control of bipolar cells restores visual function in blind mice. Journal of<br>Clinical Investigation, 2017, 127, 2598-2611.                 | 8.2  | 47        |
| 23 | Serotonin modulates spike probability in the axon initial segment through HCN channels. Nature<br>Neuroscience, 2016, 19, 826-834.                                | 14.8 | 73        |
| 24 | How Azobenzene Photoswitches Restore Visual Responses to the Blind Retina. Neuron, 2016, 92, 100-113.                                                             | 8.1  | 56        |
| 25 | Optopharmacological tools for restoring visual function in degenerative retinal diseases. Current<br>Opinion in Neurobiology, 2015, 34, 74-78.                    | 4.2  | 19        |
| 26 | Controlled release of photoswitch drugs by degradable polymer microspheres. Journal of Drug<br>Targeting, 2015, 23, 710-715.                                      | 4.4  | 11        |
| 27 | A Comprehensive Optogenetic Pharmacology Toolkit for InÂVivo Control of GABA A Receptors and<br>Synaptic Inhibition. Neuron, 2015, 88, 879-891.                   | 8.1  | 69        |
| 28 | Lateral Inhibition in the Vertebrate Retina: The Case of the Missing Neurotransmitter. PLoS Biology, 2015, 13, e1002322.                                          | 5.6  | 57        |
| 29 | Restoring Visual Function to Blind Mice with a Photoswitch that Exploits Electrophysiological<br>Remodeling of Retinal Ganglion Cells. Neuron, 2014, 81, 800-813. | 8.1  | 165       |
| 30 | lmaging an optogenetic pH sensor reveals that protons mediate lateral inhibition in the retina. Nature<br>Neuroscience, 2014, 17, 262-268.                        | 14.8 | 78        |
| 31 | Photochemical Restoration of Visual Responses in Blind Mice. Neuron, 2012, 75, 271-282.                                                                           | 8.1  | 216       |
| 32 | Tuning Photochromic Ion Channel Blockers. ACS Chemical Neuroscience, 2011, 2, 536-543.                                                                            | 3.5  | 155       |
| 33 | A Positive Feedback Synapse from Retinal Horizontal Cells to Cone Photoreceptors. PLoS Biology, 2011,<br>9, e1001057.                                             | 5.6  | 65        |
| 34 | New photochemical tools for controlling neuronal activity. Current Opinion in Neurobiology, 2009, 19, 544-552.                                                    | 4.2  | 149       |
| 35 | Photochromic Blockers of Voltageâ€Gated Potassium Channels. Angewandte Chemie - International<br>Edition, 2009, 48, 9097-9101.                                    | 13.8 | 203       |
| 36 | Photochemical tools for remote control of ion channels in excitable cells. Nature Chemical Biology, 2005, 1, 360-365.                                             | 8.0  | 110       |

**RICHARD H KRAMER** 

| #  | Article                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Encoding Light Intensity by the Cone Photoreceptor Synapse. Neuron, 2005, 48, 555-562.                                                                             | 8.1 | 69        |
| 38 | Streamlined Synaptic Vesicle Cycle in Cone Photoreceptor Terminals. Neuron, 2004, 41, 755-766.                                                                     | 8.1 | 114       |
| 39 | Mechanism of Inhibition of Cyclic Nucleotide–Gated Channel by Protein Tyrosine Kinase Probed with<br>Genistein. Journal of General Physiology, 2001, 117, 219-234. | 1.9 | 21        |
| 40 | Modulation of cyclic-nucleotide-gated channels and regulation of vertebrate phototransduction.<br>Journal of Experimental Biology, 2001, 204, 2921-2931.           | 1.7 | 52        |