Jingsha Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6585443/publications.pdf Version: 2024-02-01

LINCELL

#	Article	IF	CITATIONS
1	Co ₃ O ₄ –CeO ₂ /C as a Highly Active Electrocatalyst for Oxygen Reduction Reaction in Al–Air Batteries. ACS Applied Materials & Interfaces, 2016, 8, 34422-34430.	8.0	159
2	Boosting oxygen reduction activity of Fe-N-C by partial copper substitution to iron in Al-air batteries. Applied Catalysis B: Environmental, 2019, 242, 209-217.	20.2	121
3	Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery. Nanoscale, 2014, 6, 10235-10242.	5.6	112
4	Cu–MOF-Derived Cu/Cu ₂ O Nanoparticles and CuN _{<i>x</i>} C _{<i>y</i>} Species to Boost Oxygen Reduction Activity of Ketjenblack Carbon in Al–Air Battery. ACS Sustainable Chemistry and Engineering, 2018, 6, 413-421.	6.7	105
5	Co3O4/Co-N-C modified ketjenblack carbon as an advanced electrocatalyst for Al-air batteries. Journal of Power Sources, 2017, 343, 30-38.	7.8	99
6	Insights into KMnO4 etched N-rich carbon nanotubes as advanced electrocatalysts for Zn-air batteries. Applied Catalysis B: Environmental, 2020, 264, 118537.	20.2	81
7	Metasequoiaâ€like Nanocrystal of Ironâ€Doped Copper for Efficient Electrocatalytic Nitrate Reduction into Ammonia in Neutral Media. ChemSusChem, 2021, 14, 1825-1829.	6.8	75
8	Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for oxygen reduction reaction in Al-air batteries. Energy Storage Materials, 2017, 8, 49-58.	18.0	70
9	Recent Advances of Twoâ€Dimensional (2 D) MXenes and Phosphorene for Highâ€Performance Rechargeable Batteries. ChemSusChem, 2020, 13, 1047-1070.	6.8	59
10	Core-shell Co/CoNx@C nanoparticles enfolded by Co-N doped carbon nanosheets as a highly efficient electrocatalyst for oxygen reduction reaction. Carbon, 2018, 138, 300-308.	10.3	53
11	Metal-free heterojunction of black phosphorus/oxygen-enriched porous g-C ₃ N ₄ as an efficient photocatalyst for Fenton-like cascade water purification. Journal of Materials Chemistry A, 2020, 8, 19484-19492.	10.3	51
12	Significantly enhanced oxygen reduction activity of Cu/CuN x C y co-decorated ketjenblack catalyst for Al–air batteries. Journal of Energy Chemistry, 2018, 27, 419-425.	12.9	41
13	Effect of supporting matrixes on performance of copper catalysts in electrochemical nitrate reduction to ammonia. Journal of Power Sources, 2021, 511, 230463.	7.8	41
14	High-power double-face flow Al-air battery enabled by CeO2 decorated MnOOH nanorods catalyst. Chemical Engineering Journal, 2021, 406, 126772.	12.7	37
15	N-Doped carbon supported Co ₃ O ₄ nanoparticles as an advanced electrocatalyst for the oxygen reduction reaction in Al–air batteries. RSC Advances, 2016, 6, 55552-55559.	3.6	36
16	Fe ₃ C@Fe/N Doped Graphene-Like Carbon Sheets as a Highly Efficient Catalyst in Al-Air Batteries. Journal of the Electrochemical Society, 2017, 164, F475-F483.	2.9	34
17	Active sites-rich layered double hydroxide for nitrate-to-ammonia production with high selectivity and stability. Chemical Engineering Journal, 2022, 434, 134641.	12.7	26
18	On an easy way to prepare highly efficient Fe/N-co-doped carbon nanotube/nanoparticle composite for oxygen reduction reaction in Al–air batteries. Journal of Materials Science, 2018, 53, 10280-10291.	3.7	21

Jingsha Li

#	Article	IF	CITATIONS
19	CoFe nanoparticles dispersed in Co/Fe-N-C support with meso- and macroporous structures as the high-performance catalyst boosting the oxygen reduction reaction for Al/Mg-air batteries. Journal of Power Sources, 2022, 517, 230707.	7.8	19
20	Three-Dimensional MnCo2O4.5Mesoporous Networks as an Electrocatalyst for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2015, 162, A2302-A2307.	2.9	18
21	Ag/Fe ₃ O ₄ -N-Doped Ketjenblack Carbon Composite as Highly Efficient Oxygen Reduction Catalyst in Al-Air Batteries. Journal of the Electrochemical Society, 2017, 164, A3595-A3601.	2.9	17
22	Surface and interface engineering of hollow carbon sphere-based electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 25706-25730.	10.3	15
23	Interface engineering cerium-doped copper nanocrystal for efficient electrochemical nitrate-to-ammonia production. Electrochimica Acta, 2022, 411, 140095.	5.2	15
24	Influence of Iron Source Type on the Electrocatalytic Activity toward Oxygen Reduction Reaction in Fe-N/C for Al-Air Batteries. Journal of the Electrochemical Society, 2018, 165, F662-F670.	2.9	14
25	Cu/Cu2O nanoparticles co-regulated carbon catalyst for alkaline Al-air batteries. Chinese Chemical Letters, 2021, 32, 2427-2432.	9.0	14
26	Surface-mediated iron on porous cobalt oxide with high energy state for efficient water oxidation electrocatalysis. Green Energy and Environment, 2022, 7, 662-671.	8.7	12
27	Oxygen plasma induced interfacial CoOx/Phthalocyanine Cobalt as bifunctional electrocatalyst towards oxygen-involving reactions. International Journal of Hydrogen Energy, 2022, 47, 9905-9914.	7.1	11
28	Red-blood-cell-like nitrogen-doped porous carbon as an efficient metal-free catalyst for oxygen reduction reaction. Journal of Central South University, 2019, 26, 1458-1468.	3.0	9
29	A Strategy to Achieve Well-Dispersed Hollow Nitrogen-Doped Carbon Microspheres with Trace Iron for Highly Efficient Oxygen Reduction Reaction in Al-Air Batteries. Journal of the Electrochemical Society, 2018, 165, A3766-A3772.	2.9	8
30	Observation of 4th-order water oxidation kinetics by time-resolved photovoltage spectroscopy. IScience, 2021, 24, 103500.	4.1	8
31	Micropores regulating enables advanced carbon sphere catalyst for Zn-air batteries. Green Energy and Environment, 2023, 8, 308-317.	8.7	6
32	Fe ₇ C ₃ –Fe ₃ N/FeN _x C _y Decorated Carbon Material as Highly Efficient Catalyst for Oxygen Reduction Reaction in Al-Air Batteries. Nanoscience and Nanotechnology Letters, 2017, 9, 1909-1918.	0.4	6