
Hector Saka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6584874/publications.pdf Version: 2024-02-01

HECTOR SAKA

#	Article	IF	CITATIONS
1	Emerging Roles for Lipid Droplets in Immunity and Host-Pathogen Interactions. Annual Review of Cell and Developmental Biology, 2012, 28, 411-437.	9.4	186
2	Quantitative proteomics reveals metabolic and pathogenic properties of <i>Chlamydia trachomatis</i> developmental forms. Molecular Microbiology, 2011, 82, 1185-1203.	2.5	171
3	IRG and GBP Host Resistance Factors Target Aberrant, "Non-self―Vacuoles Characterized by the Missing of "Self―IRGM Proteins. PLoS Pathogens, 2013, 9, e1003414.	4.7	163
4	Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholerae. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1829-1834.	7.1	162
5	Reassessing the role of the secreted protease CPAF in <i>Chlamydia trachomatis</i> infection through genetic approaches. Pathogens and Disease, 2014, 71, 336-351.	2.0	126
6	Acquisition of nutrients by Chlamydiae: unique challenges of living in an intracellular compartment. Current Opinion in Microbiology, 2010, 13, 4-10.	5.1	98
7	Chlamydia Persistence: A Survival Strategy to Evade Antimicrobial Effects in-vitro and in-vivo. Frontiers in Microbiology, 2018, 9, 3101.	3.5	89
8	The Chlamydia trachomatis Type III Secretion Chaperone Slc1 Engages Multiple Early Effectors, Including TepP, a Tyrosine-phosphorylated Protein Required for the Recruitment of CrkI-II to Nascent Inclusions and Innate Immune Signaling. PLoS Pathogens, 2014, 10, e1003954.	4.7	83
9	New patterns of methicillin-resistant Staphylococcus aureus (MRSA) clones, community-associated MRSA genotypes behave like healthcare-associated MRSA genotypes within hospitals, Argentina. International Journal of Medical Microbiology, 2014, 304, 1086-1099.	3.6	65
10	Search for MicroRNAs Expressed by Intracellular Bacterial Pathogens in Infected Mammalian Cells. PLoS ONE, 2014, 9, e106434.	2.5	59
11	Evolution and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus Epidemic and Sporadic Clones in Cordoba, Argentina. Journal of Clinical Microbiology, 2006, 44, 192-200.	3.9	55
12	Vibrio cholerae cytolysin is essential for high enterotoxicity and apoptosis induction produced by a cholera toxin gene-negative V. cholerae non-O1, non-O139 strain. Microbial Pathogenesis, 2008, 44, 118-128.	2.9	52
13	Chlamydia trachomatis Infection Leads to Defined Alterations to the Lipid Droplet Proteome in Epithelial Cells. PLoS ONE, 2015, 10, e0124630.	2.5	51
14	New Carbenicillin-Hydrolyzing β-Lactamase (CARB-7) from Vibrio cholerae Non-O1, Non-O139 Strains Encoded by the VCR Region of the V. cholerae Genome. Antimicrobial Agents and Chemotherapy, 2002, 46, 2162-2168.	3.2	48
15	CARB-9, a Carbenicillinase Encoded in the VCR Region of Vibrio cholerae Non-O1, Non-O139 Belongs to a Family of Cassette-Encoded β-Lactamases. Antimicrobial Agents and Chemotherapy, 2004, 48, 4042-4046.	3.2	45
16	Emergence and Dissemination of a Community-Associated Methicillin-Resistant Panton-Valentine Leucocidin-Positive <i>Staphylococcus aureus</i> Clone Sharing the Sequence Type 5 Lineage with the Most Prevalent Nosocomial Clone in the Same Region of Argentina. Journal of Clinical Microbiology, 2008, 46, 1826-1831.	3.9	45
17	The Autophagic Pathway: A Cell Survival Strategy Against the Bacterial Pore-Forming ToxinVibrio CholeraeCytolysin. Autophagy, 2007, 3, 363-365.	9.1	27
18	High frequency of Panton-Valentine leukocidin genes in invasive methicillin-susceptible Staphylococcus aureus strains and the relationship with methicillin-resistant Staphylococcus aureus in CÃ ³ rdoba, Argentina. European Journal of Clinical Microbiology and Infectious Diseases, 2007, 26, 281-286.	2.9	17

HECTOR SAKA

#	Article	IF	CITATIONS
19	Virulence factors of non-O1 non-O139 Vibrio cholerae isolated in CÃ ³ rdoba, Argentina. Revista Argentina De Microbiologia, 2004, 36, 158-63.	0.7	15
20	Detection of Vibrio cholerae aDNA in human burials from the fifth cholera pandemic in Argentina (1886–1887 AD). International Journal of Paleopathology, 2021, 32, 74-79.	1.4	11
21	Ptr/CTL0175 Is Required for the Efficient Recovery of Chlamydia trachomatis From Stress Induced by Gamma-Interferon. Frontiers in Microbiology, 2019, 10, 756.	3.5	8
22	Male genital tract immune response against Chlamydia trachomatis infection. Reproduction, 2017, 154, R99-R110.	2.6	6
23	c-Jun Proto-Oncoprotein Plays a Protective Role in Lung Epithelial Cells Exposed to Staphylococcal α-Toxin. Frontiers in Cellular and Infection Microbiology, 2018, 8, 170.	3.9	4