José M Vaquero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6584587/publications.pdf

Version: 2024-02-01

206 papers

4,219 citations

172386 29 h-index 55 g-index

218 all docs

218 docs citations

218 times ranked

2177 citing authors

#	Article	IF	CITATIONS
1	Analysis of actinometric measurements under all-sky and cloud-free conditions in Cáceres (Spain) for the period 1913–1920. Tellus, Series B: Chemical and Physical Meteorology, 2022, 71, 1663597.	0.8	7
2	Recovery of early meteorological records from Extremadura region (SW Iberia): The â€~CliPastExtrem' (v1.0) database. Geoscience Data Journal, 2022, 9, 207-220.	1.8	3
3	Revisiting Christoph Scheiner's Sunspot Records: A New Perspective on Solar Activity of the Early Telescopic Era. Astrophysical Journal, 2022, 927, 193.	1.6	8
4	Design of a Compact Camera Obscura. Physics Teacher, 2022, 60, 282-283.	0.2	0
5	Hemispheric Sunspot Number from the Madrid Astronomical Observatory for the Period 1935–1986. Astrophysical Journal, 2022, 931, 52.	1.6	6
6	A Sunspot Catalog by Rafael Carrasco at the Madrid Astronomical Observatory for the Period 1931 – 1933. Solar Physics, 2022, 297, .	1.0	4
7	An Early Assessment of the Forecast by the Solar Cycle 25 Prediction Panel. Research Notes of the AAS, 2022, 6, 121.	0.3	4
8	Relationship between the Sunspot Number and Active Day Fraction: An Application for the Maunder Minimum. Astrophysical Journal, 2022, 933, 26.	1.6	3
9	Did anomalous atmospheric circulation favor the spread of COVID-19 in Europe?. Environmental Research, 2021, 194, 110626.	3.7	32
10	The Sunspot Drawing Collection of the National Solar Observatory at Sacramento Peak (1947–2004). Solar Physics, 2021, 296, 1.	1.0	2
11	A Reanalysis of the Number of Sunspot Groups Recorded by Pierre Gassendi in the Cycle Before the Maunder Minimum. Solar Physics, 2021, 296, $1.$	1.0	6
12	Early sunshine duration and cloud cover records in Coimbra (Portugal) for the period 1891–1950. International Journal of Climatology, 2021, 41, 4977-4986.	1.5	4
13	Strong evidence of low levels of solar activity during the Maunder Minimum. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5199-5204.	1.6	17
14	Analysis of Solar Diameter Measurements Made at the Basilica of San Petronio during and after the Maunder Minimum. Astrophysical Journal, 2021, 912, 122.	1.6	1
15	A forgotten sunspot record during the Maunder Minimum (Jean Charles Gallet, 1677). Publication of the Astronomical Society of Japan, 2021, 73, 747-752.	1.0	6
16	Dating historical droughts from religious ceremonies, the international pro pluvia rogation database. Scientific Data, 2021, 8, 186.	2.4	1
17	Numerical reconstruction of historical extreme floods: The Guadiana event of 1876. Journal of Hydrology, 2021, 599, 126292.	2.3	9
18	Solar Cycle 25 is Currently Very Similar to Solar Cycle 24. Research Notes of the AAS, 2021, 5, 181.	0.3	5

#	Article	IF	Citations
19	A note on the sunspot and prominence records made by Angelo Secchi during the period 1871–1875. Journal of Space Weather and Space Climate, 2021, 11, 51.	1.1	13
20	Sunspot Catalog (1921–1935) and Area Series (1886–1940) from the Stonyhurst College Observatory. Astrophysical Journal, Supplement Series, 2021, 256, 38.	3.0	2
21	The catastrophic floods in the Guadiana River basin since 1500 CE. Science of the Total Environment, 2021, 797, 149141.	3.9	5
22	External forcing mechanisms controlling the North Atlantic coastal upwelling regime during the mid-Holocene. Geology, 2021, 49, 433-437.	2.0	5
23	Analyses of Early Sunspot Records by Jean Tarde (1615 – 1617) and Jan Smogulecki (1621 –â€ Physics, 2021, 296, 1.	E‰1625).	Solar
24	Relationship between solar activity and direct solar irradiance in Madrid (1910–1929). Atmospheric Research, 2020, 235, 104766.	1.8	6
25	Cosmic-Ray Extremely Distributed Observatory. Symmetry, 2020, 12, 1835.	1.1	33
26	Revisiting the Amplitude of Solar Cycle 9: The Case of Sunspot Observations by W.C. Bond. Solar Physics, 2020, 295, 1.	1.0	6
27	Sunshine duration data in San Fernando (South of Spain) during 1880s: The impact of Krakatoa volcanic eruption. Geoscience Data Journal, 2020, 7, 185-191.	1.8	6
28	Sunspot Records by Antonio Colla Just After the Dalton Minimum. Solar Physics, 2020, 295, 1.	1.0	2
29	Heavy Rainfall and Landslide Event in January 1831 at the Pedregoso Mountains (Cabeza Del Buey, SW) Tj ETQq1	1.07843	314 ₄ rgBT/Ove
30	Portuguese eyewitness accounts of the great space weather event of 1582. Journal of Space Weather and Space Climate, 2020, 10, 4.	1,1	3
31	The Extreme Space Weather Event in 1903 October/November: An Outburst from the Quiet Sun. Astrophysical Journal Letters, 2020, 897, L10.	3.0	36
32	Number of sunspot groups from the Galileo–Scheiner controversy revisited. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2482-2492.	1.6	18
33	Sunspot Observations by Barnaba Oriani (1778 – 1779). Solar Physics, 2020, 295, 1.	1.0	4
34	Soonspot: Software to Determine Areas and Sunspot Positions. Solar Physics, 2020, 295, 1.	1.0	10
35	Historical sunspot records. Living Reviews in Solar Physics, 2020, 17, 1.	7.8	79
36	Pro-Pluvia Rogation Ceremonies in Extremadura (Spain): Are They a Good Proxy of Winter NAO?. Atmosphere, 2020, 11, 282.	1.0	5

#	Article	IF	CITATIONS
37	New evidence of the Suess/de Vries cycle existing in historical naked-eye observations of sunspots. Open Astronomy, 2020, 29, 28-31.	0.2	7
38	Stratospheric Transparency and Color of the Total Lunar Eclipse of 1794 February 14 Observed by Jovellanos from Gij A^3 n (Spain). Research Notes of the AAS, 2020, 4, 96.	0.3	0
39	On the Use of Naked-eye Sunspot Observations during the Maunder Minimum. Astrophysical Journal, 2020, 904, 60.	1.6	4
40	Sunspot observations by Charles Malapert during the period 1618–1626: a key data set to understand solar activity before the Maunder minimum. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3884-3895.	1.6	7
41	Unlocking Pre-1850 Instrumental Meteorological Records: A Global Inventory. Bulletin of the American Meteorological Society, 2019, 100, ES389-ES413.	1.7	68
42	Extreme Value Theory Applied to the Daily Solar Radio Flux at 10.7 cm. Solar Physics, 2019, 294, 1.	1.0	2
43	Eric Strach: Four Decades of Detailed Synoptic Solar Observations (1969â€2008). Space Weather, 2019, 17, 796-802.	1.3	4
44	Temporal variation and asymmetry of sunspot and solar plage types from 1930 to 1936. Advances in Space Research, 2019, 63, 3738-3748.	1.2	6
45	Two debatable cases for the reconstruction of the solar activity around the Maunder Minimum: Malapert and Derham. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 485, L53-L57.	1.2	18
46	Twelve Years of Daily Weather Descriptions in North America in the Eighteenth Century (Mexico City,) Tj ETQq0 0	0 rgBT /O 1.7	verlock 10 T
47	Sunspot Characteristics at the Onset of the Maunder Minimum Based on the Observations of Hevelius. Astrophysical Journal, 2019, 886, 18.	1.6	23
48	Re-evaluation of trends in atmospheric column transparency from pyrheliometer measurements in Madrid (1910–1929). Atmospheric Research, 2019, 217, 165-171.	1.8	8
49	Visualization of the challenges and limitations of the long-term sunspot number record. Nature Astronomy, 2019, 3, 205-211.	4.2	81
50	Telescopic sunspot observations during the last four centuries: a forgotten world heritage. Proceedings of the International Astronomical Union, 2019, 15, 480-481.	0.0	0
51	Extreme Value Theory Applied to the Millennial Sunspot Number Series. Astrophysical Journal, 2018, 853, 80.	1.6	17
52	Could a Hexagonal Sunspot Have Been Observed During the Maunder Minimum?. Solar Physics, 2018, 293, 1.	1.0	4
53	Sunspot Catalogue of the Observatory of the University of Coimbra (1929 – 1941). Solar Physics, 201 293, 1.	.8 1.0	15
54	A Sunspot Catalog for the Period 1952 – 1986 from Observations Made at the Madrid Astronomical Observatory. Solar Physics, 2018, 293, 1.	1.0	8

#	Article	IF	Citations
55	Early geomagnetic data from the Astronomical Observatory of Madrid (1879–1901). Geoscience Data Journal, 2018, 5, 87-93.	1.8	3
56	A Curious History of Sunspot Penumbrae: An Update. Solar Physics, 2018, 293, 1.	1.0	16
57	The Umbra–Penumbra Area Ratio of Sunspots During the Maunder Minimum. Astrophysical Journal, 2018, 865, 88.	1.6	18
58	Sporadic auroras near the geomagnetic equator: in the Philippines, on 27 October 1856. Annales Geophysicae, 2018, 36, 1153-1160.	0.6	5
59	A great space weather event in February 1730. Astronomy and Astrophysics, 2018, 616, A177.	2.1	26
60	A Limit for the Values of the <i>Dst</i> Geomagnetic Index. Geophysical Research Letters, 2018, 45, 9435-9440.	1.5	15
61	New documentary evidence of the Tungurahua eruption on April 23, 1773, Ecuador. Natural Hazards, 2018, 94, 1463-1473.	1.6	0
62	Sunspot and Group Number: Recent advances from historical data. Proceedings of the International Astronomical Union, 2018, 14, 156-159.	0.0	5
63	Sunspot Observations Made by Hallaschka During the Dalton Minimum. Solar Physics, 2018, 293, 1.	1.0	19
64	The Great Aurora of January 1770 observed in Spain. History of Geo- and Space Sciences, 2018, 9, 133-139.	0.1	5
65	Evidence of a White-Light Flare on 10 September 1886. Solar Physics, 2017, 292, 1.	1.0	4
66	Extreme Value Theory and the New Sunspot Number Series. Astrophysical Journal, 2017, 839, 98.	1.6	12
67	Variability analysis of the reconstructed daily global solar radiation under all-sky and cloud-free conditions in Madrid during the period 1887–1950. Atmospheric Research, 2017, 191, 94-100.	1.8	13
68	Unusual rainbows as auroral candidates: Another point of view. Publication of the Astronomical Society of Japan, 2017, 69, .	1.0	11
69	Metric Properties of Sundials using 3-D Models from Digital Photography. Historical Archaeology, 2017, 51, 557-562.	0.5	1
70	Analysing Spotless Days as Predictors of Solar Activity from the New Sunspot Number. Solar Physics, 2017, 292, 1.	1.0	3
71	Early meteorological records from Latin-America and the Caribbean during the 18th and 19th centuries. Scientific Data, 2017, 4, 170169.	2.4	21
72	The climate in Zafra from 1750 to 1840: temperature indexes from documentary sources. Climatic Change, 2017, 141, 671-684.	1.7	11

#	Article	IF	Citations
73	An Optical Atmospheric Phenomenon Observed in 1670 over the City of Astrakhan Was Not a Mid-Latitude Aurora. Solar Physics, 2017, 292, 1.	1.0	16
74	Revisiting the prediction of solar activity based on the relationship between the solar maximum amplitude and max–max cycle length. Advances in Space Research, 2017, 59, 379-383.	1.2	1
75	Sunspots sketches during the solar eclipses of 9th January and 29th December of 1777 in Mexico. Journal of Space Weather and Space Climate, 2017, 7, A15.	1.1	6
76	Ball lightning: a Renaissance account from Zafra (Spain). History of Geo- and Space Sciences, 2017, 8, 53-56.	0.1	2
77	Aurorae observed by Giuseppe Toaldo in Padua (1766–1797). Journal of Space Weather and Space Climate, 2016, 6, A21.	1.1	6
78	Spatial impact and triggering conditions of the exceptional hydro-geomorphological event of DecemberÂ1909 in Iberia. Natural Hazards and Earth System Sciences, 2016, 16, 371-390.	1.5	20
79	A small collection of sunspot drawings made in the Royal Astronomical Observatory of the Spanish Navy in 1884. Advances in Space Research, 2016, 58, 2247-2254.	1.2	4
80	Historical Heliophysical Series of the Ebro Observatory. Solar Physics, 2016, 291, 2587-2607.	1.0	18
81	Monitoring the Solar Radius from the Royal Observatory of the Spanish Navy since 1773. Solar Physics, 2016, 291, 1599-1612.	1.0	9
82	The First Documented Space Weather Event That Perturbed the Communication Networks in Iberia. Space Weather, 2016, 14, 464-468.	1.3	11
83	Preface to Topical Issue: Recalibration of the Sunspot Number. Solar Physics, 2016, 291, 2479-2486.	1.0	60
84	A Revised Collection of Sunspot Group Numbers. Solar Physics, 2016, 291, 3061-3074.	1.0	130
85	The New Sunspot-Number Index and Solar-Cycle Characteristics. Solar Physics, 2016, 291, 3045-3060.	1.0	10
86	An Early Sunspot Catalog by Miguel Aguilar for the Period 1914 – 1920. Solar Physics, 2016, 291, 2609-2628.	1.0	16
87	A Normalized Sunspot-Area Series Starting in 1832: An Update. Solar Physics, 2016, 291, 2931-2940.	1.0	12
88	The impact of a future solar minimum on climate change projections in the Northern Hemisphere. Environmental Research Letters, 2016, 11, 034015.	2.2	24
89	Determining sunspot positions in the classroom using the Carrington method. European Journal of Physics, 2016, 37, 045707.	0.3	2
90	Sunspot Observations During the Maunder Minimum from the Correspondence of John Flamsteed. Solar Physics, 2016, 291, 2493-2503.	1.0	24

#	Article	IF	CITATIONS
91	Sunspot group tilt angle measurements from historical observations. Advances in Space Research, 2016, 58, 1468-1474.	1.2	13
92	The first meteorological observations at a tropical high elevation site: Antisana, 1846. Journal of Mountain Science, 2016, 13, 1047-1055.	0.8	3
93	Long-Term Trends and Gleissberg Cycles in Aurora Borealis Records (1600 – 2015). Solar Physics, 2016 291, 613-642.	5 , 1.0	25
94	Sunspots During the Maunder Minimum from Machina Coelestis by Hevelius. Solar Physics, 2015, 290, 2719-2732.	1.0	32
95	The Maunder minimum (1645–1715) was indeed a grand minimum: A reassessment of multiple datasets. Astronomy and Astrophysics, 2015, 581, A95.	2.1	158
96	The Solar Rotation in the Period 1853 – 1870 from the Sunspot Catalogues of Carrington, Peters, and la Rue. Solar Physics, 2015, 290, 2189-2198.	de 1.0	2
97	An early weather diary from Iberia (Lisbon, 1631–1632). Weather, 2015, 70, 20-24.	0.6	14
98	Revision of the Sunspot Number(s). Space Weather, 2015, 13, 529-530.	1.3	68
99	An early clear sky record from Eastern Spain: 1837–1879. International Journal of Climatology, 2015, 35, 999-1006.	1.5	1
100	Level and length of cyclic solar activity during the Maunder minimum as deduced from the active-day statistics. Astronomy and Astrophysics, 2015, 577, A71.	2.1	68
101	The climate in Zafra from 1750 to 1840: precipitation. Climatic Change, 2015, 129, 267-280.	1.7	20
102	Equivalence Relations Between the Cortie and Zýrich Sunspot Group Morphological Classifications. Solar Physics, 2015, 290, 1445-1455.	1.0	14
103	Sunspot latitudes during the Maunder Minimum: A machine-readable catalogue from previous studies. Advances in Space Research, 2015, 55, 1546-1552.	1.2	25
104	Redefining the limit dates for the Maunder Minimum. New Astronomy, 2015, 34, 120-122.	0.8	34
105	Revisiting the Sunspot Number. Space Sciences Series of ISSI, 2015, , 35-103.	0.0	19
106	Climatic potential of Islamic chronicles in Iberia: Extreme droughts (ad 711–1010). Holocene, 2014, 24, 370-374.	0.9	23
107	The climate in Zafra from 1750 to 1840: history and description of weather observations. Climatic Change, 2014, 126, 107-118.	1.7	13
108	A note on the relationship between sunspot numbers and active days. Advances in Space Research, 2014, 53, 1180-1183.	1.2	9

#	Article	IF	Citations
109	Reconstructing past solar activity using meridian solar observations: The case of the Royal Observatory of the Spanish Navy (1833–1840). Advances in Space Research, 2014, 53, 1162-1168.	1.2	22
110	The Sunspot Catalogues of Carrington, Peters and de la Rue: Quality Control and Machine-Readable Versions. Solar Physics, 2014, 289, 79-90.	1.0	17
111	Revised Group Sunspot Number Values for 1640, 1652, and 1741. Solar Physics, 2014, 289, 803-808.	1.0	25
112	Long-term Spatial and Temporal Variations of Aurora Borealis Events in the Period 1700 – 1905. Solar Physics, 2014, 289, 1843-1861.	1.0	12
113	Revisiting the Sunspot Number. Space Science Reviews, 2014, 186, 35-103.	3.7	526
114	Sunspot Numbers and Areas from the Madrid Astronomical Observatory (1876 – 1986). Solar Physics, 2014, 289, 4335-4349.	1.0	31
115	Sunspot Catalogue of the Valencia Observatory (1920 – 1928). Solar Physics, 2014, 289, 4351-4364.	1.0	18
116	The controversial early brightening in the first half of 20th century: A contribution from pyrheliometer measurements in Madrid (Spain). Global and Planetary Change, 2014, 115, 71-75.	1.6	19
117	Influence of solar eclipse of November 3rd, 2013 on the total ozone column over Badajoz, Spain. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 112, 43-46.	0.6	3
118	Early Spanish meteorological records (1780–1850). International Journal of Climatology, 2014, 34, 593-603.	1.5	36
119	Early sightings of comets near the Sun. Physics Today, 2014, 67, 9-9.	0.3	O
120	Forty two years counting spots: Solar observations by D.E. Hadden during 1890–1931 revisited. New Astronomy, 2013, 25, 95-102.	0.8	16
121	The first meteorological measurements in the Iberian Peninsula: evaluating the storm of November 1724. Climatic Change, 2013, 118, 443-455.	1.7	27
122	Measuring solar rotation from digital camera images. European Journal of Physics, 2013, 34, 527-536.	0.3	2
123	A possible case of Sporadic Aurora in 1843 from Mexico. Geofisica International, 2013, 52, 87-92.	0.2	8
124	A CRITICAL COMMENT ON THE CLAIMED RELATION BETWEEN THE SOLAR MAXIMUM AMPLITUDE AND MAX-MAX CYCLE LENGTH. Astronomical Journal, 2012, 144, 69.	1.9	2
125	The meteorological observations of Bento Sanches Dorta, Rio de Janeiro, Brazil: 1781–1788. Climatic Change, 2012, 115, 579-595.	1.7	16
126	Early Portuguese meteorological measurements (18th century). Climate of the Past, 2012, 8, 353-371.	1.3	49

#	Article	IF	CITATIONS
127	The proposed "Waldmeier discontinuity†How does it affect to sunspot cycle characteristics?. Journal of Space Weather and Space Climate, 2012, 2, A12.	1.1	12
128	Assessing extreme droughts in Spain during 1750–1850 from rogation ceremonies. Climate of the Past, 2012, 8, 705-722.	1.3	46
129	How useful could Arabic documentary sources be for reconstructing past climate?. Weather, 2012, 67, 76-82.	0.6	16
130	An early scientific report of ball lightning from Brazil. Weather, 2012, 67, 96-97.	0.6	3
131	A Note on Solar Cycle Length During the Medieval Climate Anomaly. Solar Physics, 2012, 279, 289-294.	1.0	13
132	Acoustical environment of the medieval centre of $\tilde{CA_i}$ ceres (Spain). Applied Acoustics, 2012, 73, 673-685.	1.7	21
133	A Simple Method to Check the Reliability of Annual Sunspot Number in the Historical Period 1610 – 18 Solar Physics, 2012, 277, 389-395.	347 1.0	24
134	Trends in frequency indices of daily precipitation over the Iberian Peninsula during the last century. Journal of Geophysical Research, 2011, 116, .	3.3	85
135	Spanish eyewitness accounts of the great space weather event of 1859. Acta Geodaetica Et Geophysica Hungarica, 2011, 46, 370-377.	0.4	11
136	Historical records of solar grand minima: a review. Proceedings of the International Astronomical Union, 2011, 7, 383-392.	0.0	3
137	REVISITED SUNSPOT DATA: A NEW SCENARIO FOR THE ONSET OF THE MAUNDER MINIMUM. Astrophysical Journal Letters, 2011, 731, L24.	3.0	87
138	HSUNSPOTS: A tool for the analysis of historical sunspot drawings. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 187-190.	0.6	19
139	Geomagnetic records of Carrington's storm from Guatemala. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 308-315.	0.6	14
140	The Hidden Role of Women in Monitoring Nineteenth-Century African Weather: Instrumental Observations in Equatorial Guinea. Bulletin of the American Meteorological Society, 2011, 92, 315-324.	1.7	5
141	Witnessing the impact of the 1783–1784 Laki eruption in the Southern Hemisphere. Climatic Change, 2010, 99, 535-546.	1.7	24
142	Solar Rotation During the Period 1847 – 1849. Solar Physics, 2010, 261, 1-9.	1.0	4
143	Aurorae Observed at the Canary Islands. Solar Physics, 2010, 267, 431-444.	1.0	14
144	Solar irradiance and total ozone over El Arenosillo (Spain) during the solar eclipse of 3 October 2005. Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72, 789-793.	0.6	4

#	Article	IF	CITATIONS
145	155-day Periodicity in solar cycles 3 and 4. New Astronomy, 2010, 15, 385-391.	0.8	5
146	Francisco Salvá's auroral observations from Barcelona during 1780–1825. Advances in Space Research, 2010, 45, 1388-1392.	1.2	22
147	The Sun Recorded Through History. Astrophysics and Space Science Library, 2009, , .	1.0	107
148	Reconstructing The Trajectory of The August 1680 Hurricane From Contemporary Records. Bulletin of the American Meteorological Society, 2009, 90, 971-978.	1.7	15
149	Iberia in 1816, the year without a summer. International Journal of Climatology, 2009, 29, 99-115.	1.5	80
150	Early observation of the aurora australis: AD 1640. Astronomy and Geophysics, 2009, 50, 5.20-5.24.	0.1	3
151	Is the Suess cycle present in historical naked-eye observations of sunspots?. New Astronomy, 2009, 14, 307-310.	0.8	13
152	A test for the sunspot theory of schizophrenia. Medical Hypotheses, 2009, 73, 268.	0.8	5
153	Terrestrial Aurorae and Solar–Terrestrial Relations. Astrophysics and Space Science Library, 2009, , 279-336.	1.0	2
154	Solar Drawings. Astrophysics and Space Science Library, 2009, , 103-173.	1.0	0
155	The Solar Diameter and the Astronomical Unit. Astrophysics and Space Science Library, 2009, , 217-278.	1.0	0
156	Reconstruction of Solar Activity During the Telescopic Era. Astrophysics and Space Science Library, 2009, , 337-376.	1.0	0
157	Solar Eclipses. Astrophysics and Space Science Library, 2009, , 175-216.	1.0	0
158	Naked-Eye Sunspots. Astrophysics and Space Science Library, 2009, , 57-102.	1.0	1
159	Can the Solar Cycle Amplitude Be Predicted Using theÂPreceding Solar Cycle Length?. Solar Physics, 2008, 250, 199-206.	1.0	13
160	An unsung hero. Astronomy and Geophysics, 2008, 49, 2.14-2.16.	0.1	2
161	The 1870 space weather event: Geomagnetic and auroral records. Journal of Geophysical Research, 2008, 113, .	3.3	30
162	Mental illness and sunspot number: Is there a relationship?. Medical Hypotheses, 2008, 70, 204.	0.8	4

#	Article	IF	CITATIONS
163	A Historical Analog of 2005 Hurricane Vince. Bulletin of the American Meteorological Society, 2008, 89, 191-202.	1.7	26
164	A Pioneer in Tropical Meteorology: William Sharpe's Barbados Weather Journal, April–August 1680. Bulletin of the American Meteorological Society, 2007, 88, 1957-1964.	1.7	3
165	Trends in Block-Seasonal Extreme Rainfall over the Iberian Peninsula in the Second Half of the Twentieth Century. Journal of Climate, 2007, 20, 113-130.	1.2	86
166	Sunspot numbers can detect pandemic influenza A: The use of different sunspot numbers. Medical Hypotheses, 2007, 68, 1189-1190.	0.8	10
167	Sporadic aurora from Spain. Earth, Planets and Space, 2007, 59, e49-e51.	0.9	11
168	Ozone mini-hole over southwestern Spain during January 2004: Influence over ultraviolet radiation. Geophysical Research Letters, 2007, 34, .	1.5	21
169	Historical sunspot observations: A review. Advances in Space Research, 2007, 40, 929-941.	1.2	148
170	Two Early Sunspots Observers: Teodoro de Almeida and José Antonio Alzate. Solar Physics, 2007, 240, 165-175.	1.0	18
171	Sunspot numbers during 1736–1739 revisited. Advances in Space Research, 2007, 40, 1895-1903.	1.2	20
172	Changes in frequency and intensity of daily precipitation over the Iberian Peninsula. Journal of Geophysical Research, 2006, 111 , .	3.3	44
173	Results of geomagnetic observations in Central Africa by Portuguese explorers during 1877–1885. Physics of the Earth and Planetary Interiors, 2006, 157, 8-15.	0.7	5
174	Identification of Possible Intense Historical Solar Storms During the Years 1781–1788 Inferred from Aurorae and Geomagnetic Observations in Rio De Janeiro. Solar Physics, 2006, 235, 419-432.	1.0	10
175	Solar Rotation in the 17th century. Solar Physics, 2006, 234, 379-392.	1.0	49
176	A Note on Solar Cycle Length Estimates. Solar Physics, 2006, 235, 433-437.	1.0	9
177	On the Connection Between Solar Activity and Low-Latitude Aurorae in the Period 1715 – 1860. Solar Physics, 2006, 238, 405-420.	1.0	21
178	Variable stars in the classroom. European Journal of Physics, 2006, 27, 635-646.	0.3	0
179	Solar Global Radiation and Sunshine Duration in Extremadura (Spain). Physica Scripta, 2005, , 24.	1.2	3
180	A ?lost? sunspot observation in 1785. Astronomische Nachrichten, 2005, 326, 112-114.	0.6	24

#	Article	IF	Citations
181	Auroras Observed in Portugal in Late 18th Century Obtained from Printed and Manuscript Meteorological Observations. Solar Physics, 2005, 231, 157-166.	1.0	23
182	Results of the Rio de Janeiro magnetic observations 1781â^'1788. Annales Geophysicae, 2005, 23, 1881-1887.	0.6	10
183	A categorization method applied to the study of urban road traffic noise. Journal of the Acoustical Society of America, 2005, 117 , 2844 - 2852 .	0.5	60
184	Effects of Leisure Activity Related Noise in Residential Zones. Building Acoustics, 2005, 12, 265-276.	1.1	13
185	A note on some measurements of geomagnetic declination in 1776 and 1778. Physics of the Earth and Planetary Interiors, 2005, 152, 62-66.	0.7	0
186	The NAO signal in daily rainfall series over the Iberian Peninsula. Climate Research, 2005, 29, 103-109.	0.4	57
187	Analysis of an early measurement of the speed of sound propagation in the atmosphere. Applied Acoustics, 2004, 65, 59-67.	1.7	0
188	Solar Signal in the Number of Floods Recorded for the Tagus River Basin over the Last Millennium. Climatic Change, 2004, 66, 23-26.	1.7	34
189	On the solar activity during the year 1784. Solar Physics, 2004, 219, 379-384.	1.0	21
190	Reconstruction of a Monthly Homogeneous Sunspot Area Series Since 1832. Solar Physics, 2004, 221, 179-189.	1.0	19
191	A forgotten naked-eye sunspot recorded by Galileo. Solar Physics, 2004, 223, 283-286.	1.0	13
192	The Solar Corona in the Eclipse of 24 June 1778. Solar Physics, 2003, 216, 41-45.	1.0	8
193	Periodicities of the de la rue Sunspot Area Measurements. Solar Physics, 2003, 218, 307-317.	1.0	2
194	Auroras observed in the Iberian Peninsula (1700–1855) from Rico Sinobas' catalogue. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65, 677-682.	0.6	24
195	Measuring solar limb-darkening with modest equipment. European Journal of Physics, 2002, 23, 323-330.	0.3	8
196	A 250-year cycle in naked-eye observations of sunspots. Geophysical Research Letters, 2002, 29, 58-1-58-4.	1.5	63
197	Evidence for a sunspot in A.D. 939 in an Arabian Source. Solar Physics, 2002, 206, 209-211.	1.0	17
198	A Measure of the Solar Rotation During the Maunder Minimum. Solar Physics, 2002, 207, 219-222.	1.0	20

#	Article	IF	CITATIONS
199	On the Reliability of the de la rue Sunspot Area Measurements. Solar Physics, 2002, 209, 311-319.	1.0	17
200	An observation of a fogbow in the Natural Park of MonfragÃ1/4e, Spain. Weather, 2002, 57, 446-448.	0.6	2
201	<i>Letter to the Editor</i> Two early observations of aurora at low latitudes. Annales Geophysicae, 2001, 19, 809-811.	0.6	10
202	The First Known Instrumental Meteorological Observations in Extremadura (Spain): Badajoz (1830)., 2001,, 43-52.		0
203	An old apparatus for physics teaching: Escriche's pendulum. Physics Teacher, 2000, 38, 424-425.	0.2	4
204	An antique empirical rule for the calculation of height from barometric measurements. Weather, 2000, 55, 415-417.	0.6	0
205	Politics Weighs on the physics student. Physics Teacher, 2000, 38, 123-123.	0.2	0
206	A measurement of Teide height in 1776. European Journal of Physics, 1999, 20, 321-325.	0.3	2