Gianfranco Pasut

List of Publications by Citations

Source: https://exaly.com/author-pdf/6584558/gianfranco-pasut-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

6,649 81 100 35 h-index g-index citations papers 6.28 6.5 107 7,213 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
100	PEGylation, successful approach to drug delivery. <i>Drug Discovery Today</i> , 2005 , 10, 1451-8	8.8	1772
99	State of the art in PEGylation: the great versatility achieved after forty years of research. <i>Journal of Controlled Release</i> , 2012 , 161, 461-72	11.7	540
98	Polymerਰrug conjugation, recent achievements and general strategies. <i>Progress in Polymer Science</i> , 2007 , 32, 933-961	29.6	518
97	PEG conjugates in clinical development or use as anticancer agents: an overview. <i>Advanced Drug Delivery Reviews</i> , 2009 , 61, 1177-88	18.5	380
96	Polyoxazoline: chemistry, properties, and applications in drug delivery. <i>Bioconjugate Chemistry</i> , 2011 , 22, 976-86	6.3	309
95	PEG-doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. <i>Bioconjugate Chemistry</i> , 2005 , 16, 775-84	6.3	249
94	Synthesis and characterization of poly(2-ethyl 2-oxazoline)-conjugates with proteins and drugs: suitable alternatives to PEG-conjugates?. <i>Journal of Controlled Release</i> , 2008 , 125, 87-95	11.7	187
93	Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid. <i>Journal of Controlled Release</i> , 2008 , 127, 239-48	11.7	138
92	Anti-cancer PEG-enzymes: 30 years old, but still a current approach. <i>Advanced Drug Delivery Reviews</i> , 2008 , 60, 69-78	18.5	115
91	Dendritic poly(ethylene glycol) bearing paclitaxel and alendronate for targeting bone neoplasms. <i>Molecular Pharmaceutics</i> , 2011 , 8, 1063-72	5.6	101
90	Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. <i>Journal of Controlled Release</i> , 2015 , 199, 106-13	11.7	100
89	Protein, peptide and non-peptide drug PEGylation for therapeutic application. <i>Expert Opinion on Therapeutic Patents</i> , 2004 , 14, 859-894	6.8	99
88	Novel monodisperse PEG-dendrons as new tools for targeted drug delivery: synthesis, characterization and cellular uptake. <i>Biomacromolecules</i> , 2006 , 7, 146-53	6.9	83
87	Pegylation of biological molecules and potential benefits: pharmacological properties of certolizumab pegol. <i>BioDrugs</i> , 2014 , 28 Suppl 1, S15-23	7.9	82
86	PEG-Ara-C conjugates for controlled release. European Journal of Medicinal Chemistry, 2004, 39, 123-33	6.8	79
85	Site-specific pegylation of G-CSF by reversible denaturation. <i>Bioconjugate Chemistry</i> , 2007 , 18, 1824-30	6.3	72
84	PEG-epirubicin Conjugates with High Drug Loading. <i>Journal of Bioactive and Compatible Polymers</i> , 2005 , 20, 213-230	2	71

(2016-2012)

83	Selective conjugation of poly(2-ethyl 2-oxazoline) to granulocyte colony stimulating factor. <i>Journal of Controlled Release</i> , 2012 , 159, 353-61	11.7	66
82	Relevance of folic acid/polymer ratio in targeted PEG-epirubicin conjugates. <i>Journal of Controlled Release</i> , 2010 , 146, 388-99	11.7	66
81	PEGylation of Proteins as Tailored Chemistry for Optimized Bioconjugates. <i>Advances in Polymer Science</i> , 2005 , 95-134	1.3	66
80	Pegylation for improving the effectiveness of therapeutic biomolecules. <i>Drugs of Today</i> , 2009 , 45, 687	2.5	66
79	Poly(ethylene glycol)-paclitaxel-alendronate self-assembled micelles for the targeted treatment of breast cancer bone metastases. <i>Biomaterials</i> , 2013 , 34, 3795-806	15.6	65
78	A new method to increase selectivity of transglutaminase mediated PEGylation of salmon calcitonin and human growth hormone. <i>Journal of Controlled Release</i> , 2011 , 154, 27-34	11.7	65
77	Poly(ethylene glycol)-poly(ester-carbonate) block copolymers carrying PEG-peptidyl-doxorubicin pendant side chains: synthesis and evaluation as anticancer conjugates. <i>Biomacromolecules</i> , 2005 , 6, 914	1 ⁶ 28	53
76	Chemical and enzymatic site specific PEGylation of hGH. <i>Bioconjugate Chemistry</i> , 2013 , 24, 456-63	6.3	52
75	Polymers for Protein Conjugation. <i>Polymers</i> , 2014 , 6, 160-178	4.5	52
74	Conjugation of hyaluronan to proteins. <i>Carbohydrate Polymers</i> , 2013 , 92, 2163-70	10.3	47
73	Nitric oxide modulates proapoptotic and antiapoptotic properties of chemotherapy agents: the case of NO-pegylated epirubicin. <i>FASEB Journal</i> , 2006 , 20, 765-7	0.9	42
72	PEGylation: Posttranslational bioengineering of protein biotherapeutics. <i>Drug Discovery Today: Technologies</i> , 2008 , 5, e57-64	7.1	41
71	Inulin-D-£locopherol succinate (INVITE) nanomicelles as a platform for effective intravenous administration of curcumin. <i>Biomacromolecules</i> , 2015 , 16, 550-7	6.9	40
70	Polymer-drug conjugates for combination anticancer therapy: investigating the mechanism of action. <i>Journal of Medicinal Chemistry</i> , 2009 , 52, 6499-502	8.3	40
69	The Pentose Phosphate Pathway and Its Involvement in Cisplatin Resistance. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	39
68	A new PEG-beta-alanine active derivative for releasable protein conjugation. <i>Bioconjugate Chemistry</i> , 2008 , 19, 2427-31	6.3	39
67	A hyaluronic acid-salmon calcitonin conjugate for the local treatment of osteoarthritis: chondro-protective effect in a rabbit model of early OA. <i>Journal of Controlled Release</i> , 2014 , 187, 30-8	11.7	38
66	Polyethylene glycols: An effective strategy for limiting liver ischemia reperfusion injury. <i>World Journal of Gastroenterology</i> , 2016 , 22, 6501-8	5.6	35

65	Poly(ethylene glycol)-mesalazine conjugate for colon specific delivery. <i>International Journal of Pharmaceutics</i> , 2009 , 368, 171-7	6.5	34
64	Kinetic interaction analysis of human interleukin 5 receptor alpha mutants reveals a unique binding topology and charge distribution for cytokine recognition. <i>Journal of Biological Chemistry</i> , 2004 , 279, 9547-56	5.4	34
63	Site-Specific Transglutaminase-Mediated Conjugation of Interferon ⊕b at Glutamine or Lysine Residues. <i>Bioconjugate Chemistry</i> , 2016 , 27, 2695-2706	6.3	33
62	Protein PEGylation, basic science and biological applications 2009 , 11-31		33
61	Polysialic acid as a drug carrier: evaluation of a new polysialic acid pirubicin conjugate and its comparison against established drug carriers. <i>Polymer Chemistry</i> , 2013 , 4, 1600-1609	4.9	31
60	A Biodegradable Polymeric Carrier Based on PEG for Drug Delivery. <i>Journal of Bioactive and Compatible Polymers</i> , 2009 , 24, 220-234	2	30
59	Drug and protein delivery by polymer conjugation. <i>Journal of Drug Delivery Science and Technology</i> , 2016 , 32, 132-141	4.5	28
58	Multivalent and flexible PEG-nitrilotriacetic acid derivatives for non-covalent protein pegylation. <i>Pharmaceutical Research</i> , 2011 , 28, 2412-21	4.5	28
57	Detection of sites of infection in mice using 99mTc-labeled PN(2)S-PEG conjugated to UBI and 99mTc-UBI: a comparative biodistribution study. <i>Nuclear Medicine and Biology</i> , 2009 , 36, 57-64	2.1	28
56	Polyethylene glycol rinse solution: an effective way to prevent ischemia-reperfusion injury. <i>World Journal of Gastroenterology</i> , 2014 , 20, 16203-14	5.6	27
55	Polyethylene glycol and a novel developed polyethylene glycol-nitric oxide normalize arteriolar response and oxidative stress in ischemia-reperfusion. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2006 , 291, H1536-44	5.2	26
54	Synthesis, characterization and preliminary cytotoxicity assays of poly(ethylene glycol)-malonato-Pt-DACH conjugates. <i>European Journal of Medicinal Chemistry</i> , 2003 , 38, 739-49	6.8	26
53	Cisplatin liposome and 6-amino nicotinamide combination to overcome drug resistance in ovarian cancer cells. <i>Oncotarget</i> , 2018 , 9, 16847-16860	3.3	26
52	New active poly(ethylene glycol) derivative for amino coupling. <i>Reactive and Functional Polymers</i> , 2007 , 67, 529-539	4.6	25
51	Cardiac safety and antitumoral activity of a new nitric oxide derivative of pegylated epirubicin in mice. <i>Anti-Cancer Drugs</i> , 2007 , 18, 1081-91	2.4	24
50	Chemical and Enzymatic Site Specific PEGylation of hGH: The Stability and in vivo Activity of PEG-N-Terminal-hGH and PEG-Gln141-hGH Conjugates. <i>Macromolecular Bioscience</i> , 2016 , 16, 50-6	5.5	24
49	Site-selective enzymatic chemistry for polymer conjugation to protein lysine residues: PEGylation of G-CSF at lysine-41. <i>Polymer Chemistry</i> , 2016 , 7, 6545-6553	4.9	22
48	Covalent conjugation of poly(ethylene glycol) to proteins and peptides: strategies and methods. <i>Methods in Molecular Biology</i> , 2011 , 751, 95-129	1.4	22

(2019-2017)

47	Covalent immobilisation of transglutaminase: stability and applications in protein PEGylation. <i>Journal of Drug Targeting</i> , 2017 , 25, 856-864	5.4	19	
46	PEG-metronidazole conjugates: synthesis, in vitro and in vivo properties. <i>Il Farmaco</i> , 2005 , 60, 783-8		17	
45	Polyethylene Glycol Preconditioning: An Effective Strategy to Prevent Liver Ischemia Reperfusion Injury. <i>Oxidative Medicine and Cellular Longevity</i> , 2016 , 2016, 9096549	6.7	17	
44	Highly efficient technetium-99m labeling procedure based on the conjugation of N-[N-(3-diphenylphosphinopropionyl)glycyl]cysteine ligand with poly(ethylene glycol). <i>Bioconjugate Chemistry</i> , 2004 , 15, 1046-54	6.3	16	
43	A site-selective hyaluronan-interferon a conjugate for the treatment of ovarian cancer. <i>Journal of Controlled Release</i> , 2016 , 236, 79-89	11.7	16	
42	Role of proton pump inhibitor on esophageal carcinogenesis and pancreatic acinar cell metaplasia development: an experimental in vivo study. <i>PLoS ONE</i> , 2014 , 9, e112862	3.7	15	
41	Drug conjugation to hyaluronan widens therapeutic indications for ovarian cancer. <i>Oncoscience</i> , 2015 , 2, 373-81	0.8	13	
40	Molecular platforms for targeted drug delivery. <i>International Review of Cell and Molecular Biology</i> , 2019 , 346, 1-50	6	12	
39	Thiol-Activated Anticancer Agents: The State Of The Art. <i>Anti-Cancer Agents in Medicinal Chemistry</i> , 2016 , 16, 1-1	2.2	12	
38	Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation. <i>BioMed Research International</i> , 2015 , 2015, 794287	3	11	
37	Peritoneal tumor carcinomatosis: pharmacological targeting with hyaluronan-based bioconjugates overcomes therapeutic indications of current drugs. <i>PLoS ONE</i> , 2014 , 9, e112240	3.7	10	
36	Stabilization of a supplemental digestive enzyme by post-translational engineering using chemically-activated polyethylene glycol. <i>Biotechnology Letters</i> , 2011 , 33, 617-21	3	10	
35	Evolution of polymer conjugation to proteins 2020 , 3-22		9	
34	A novel PEGBaloperidol conjugate with a non-degradable linker shows the feasibility of using polymerBrug conjugates in a non-prodrug fashion. <i>Polymer Chemistry</i> , 2016 , 7, 7204-7210	4.9	8	
33	PHEA-graft-polymethacrylate supramolecular aggregates for protein oral delivery. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2013 , 84, 21-8	5.7	8	
32	Hyaluronic Acid as a Protein Polymeric Carrier: An Overview and a Report on Human Growth Hormone. <i>Current Drug Targets</i> , 2015 , 16, 1503-11	3	8	
31	Overcoming Cancer Cell Drug Resistance by a Folic Acid Targeted Polymeric Conjugate of Buthionine Sulfoximine. <i>Anti-Cancer Agents in Medicinal Chemistry</i> , 2019 , 19, 1513-1522	2.2	8	
30	Pharmacokinetic stability of macrocyclic peptide triazole HIV-1 inactivators alone and in liposomes. Journal of Peptide Science, 2019 , 25, e3155	2.1	6	

29	Enzymatic formation of PEGylated oligonucleotides. <i>Bioconjugate Chemistry</i> , 2014 , 25, 433-41	6.3	6
28	Transgultaminase-Mediated Nanoarmoring of Enzymes by PEGylation. <i>Methods in Enzymology</i> , 2017 , 590, 317-346	1.7	6
27	Improvement of Drug Therapy by Covalent PEG Conjugation: An Overview From a Research Laboratory. <i>Israel Journal of Chemistry</i> , 2010 , 50, 151-159	3.4	6
26	CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo. <i>Journal of Clinical Investigation</i> , 2020 , 130, 2435-2450	15.9	6
25	A protein engineering approach differentiates the functional importance of carbohydrate moieties of interleukin-5 receptor \(\frac{1}{2}\) Biochemistry, 2011 , 50, 7546-56	3.2	5
24	The evolution of polymer conjugation and drug targeting for the delivery of proteins and bioactive molecules. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2021 , 13, e1689	9.2	5
23	Transglutaminase and Sialyltransferase Enzymatic Approaches for Polymer Conjugation to Proteins. <i>Advances in Protein Chemistry and Structural Biology</i> , 2018 , 112, 123-142	5.3	4
22	Drug B olymer Conjugates 2007 , 1043-1068		4
21	Basic Strategies for PEGylation of Peptide and Protein Drugs 2006 , 53-84		4
20	Novel super stealth immunoliposomes for cancer targeted delivery of doxorubicin: an innovative strategy to reduce liver toxicity. <i>Digestive and Liver Disease</i> , 2019 , 51, e21	3.3	3
19	Poly(L-glutamic acid)-co-poly(ethylene glycol) block copolymers for protein conjugation. <i>Journal of Controlled Release</i> , 2020 , 324, 228-237	11.7	3
18	Folic Acid-Targeted Paclitaxel-Polymer Conjugates Exert Selective Cytotoxicity and Modulate Invasiveness of Colon Cancer Cells. <i>Pharmaceutics</i> , 2021 , 13,	6.4	3
17	A non-covalent antibody complex for the delivery of anti-cancer drugs. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2019 , 142, 49-60	5.7	2
16	Poly(ethylene glycol)-Protein, Peptide, and Enzyme Conjugates 2010 , 265-288		2
15	The role and impact of polyethylene glycol on anaphylactic reactions to COVID-19 nano-vaccines. <i>Nature Nanotechnology</i> , 2021 , 16, 1169-1171	28.7	2
14	Enzymatic approaches to new protein conjugates 2020 , 271-295		2
13	Actin-Resistant DNase1L2 as a Potential Therapeutics for CF Lung Disease. <i>Biomolecules</i> , 2021 , 11,	5.9	2
12	Hyaluronan is a natural and effective immunological adjuvant for protein-based vaccines. <i>Cellular and Molecular Immunology</i> , 2021 , 18, 1197-1210	15.4	2

LIST OF PUBLICATIONS

11	of Controlled Release, 2021 , 337, 431-447	11.7	2	
10	Protein PEGylation 2012 , 295-313		1	
9	Liver Graft Washout Prevents Against Reperfusion Injury: Protective Effects on Glycocalyx and Cytoskeleton. <i>Transplantation</i> , 2012 , 94, 579	1.8	1	
8	PEG: a useful technology in anticancer therapy 2009 , 255-271		1	
7	PEGylated #Interferons: two different strategies to achieve increased efficacy 2009 , 205-216		1	
6	PEGylated Proteins as Cancer Therapeutics 2006 , 85-110		1	
5	Original and generic preservation solutions in organ transplantation. A new paradigm?. <i>Acta Cirurgica Brasileira</i> , 2020 , 35, e202000101	1.6	1	
4	Conjugation to PEG as a Strategy to Limit the Uptake of Drugs by the Placenta: Potential Applications for Drug Administration in Pregnancy. <i>Molecular Pharmaceutics</i> , 2021 ,	5.6	1	
3	A rhabdomyosarcoma hydrogel model to unveil cell-extracellular matrix interactions. <i>Biomaterials Science</i> , 2021 ,	7.4	1	
2	Challenges in the analytical characterization of PEGylated asparaginase 2020 , 205-231		1	
1	Efficacy of PEGylated ciliary neurotrophic factor superagonist variant in diet-induced obesity mice <i>PLoS ONE</i> , 2022 , 17, e0265749	3.7		