Gianfranco Pasut

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6584558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PEGylation, successful approach to drug delivery. Drug Discovery Today, 2005, 10, 1451-1458.	3.2	2,029
2	State of the art in PEGylation: The great versatility achieved after forty years of research. Journal of Controlled Release, 2012, 161, 461-472.	4.8	629
3	Polymer–drug conjugation, recent achievements and general strategies. Progress in Polymer Science, 2007, 32, 933-961.	11.8	569
4	PEG conjugates in clinical development or use as anticancer agents: An overview. Advanced Drug Delivery Reviews, 2009, 61, 1177-1188.	6.6	424
5	Polyoxazoline: Chemistry, Properties, and Applications in Drug Delivery. Bioconjugate Chemistry, 2011, 22, 976-986.	1.8	357
6	PEGâ^'Doxorubicin Conjugates:  Influence of Polymer Structure on Drug Release, in Vitro Cytotoxicity, Biodistribution, and Antitumor Activity. Bioconjugate Chemistry, 2005, 16, 775-784.	1.8	266
7	Synthesis and characterization of poly(2-ethyl 2-oxazoline)-conjugates with proteins and drugs: Suitable alternatives to PEG-conjugates?. Journal of Controlled Release, 2008, 125, 87-95.	4.8	204
8	Antitumoral activity of PEG–gemcitabine prodrugs targeted by folic acid. Journal of Controlled Release, 2008, 127, 239-248.	4.8	154
9	Anti-cancer PEC-enzymes: 30Âyears old, but still a current approach. Advanced Drug Delivery Reviews, 2008, 60, 69-78.	6.6	131
10	Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. Journal of Controlled Release, 2015, 199, 106-113.	4.8	125
11	Dendritic Poly(ethylene glycol) Bearing Paclitaxel and Alendronate for Targeting Bone Neoplasms. Molecular Pharmaceutics, 2011, 8, 1063-1072.	2.3	110
12	Protein, peptide and non-peptide drug PEGylation for therapeutic application. Expert Opinion on Therapeutic Patents, 2004, 14, 859-894.	2.4	106
13	Pegylation of Biological Molecules and Potential Benefits: Pharmacological Properties of Certolizumab Pegol. BioDrugs, 2014, 28, 15-23.	2.2	99
14	The Pentose Phosphate Pathway and Its Involvement in Cisplatin Resistance. International Journal of Molecular Sciences, 2020, 21, 937.	1.8	86
15	PEG–Ara-C conjugates for controlled release. European Journal of Medicinal Chemistry, 2004, 39, 123-133.	2.6	85
16	Novel Monodisperse PEGâ^'Dendrons as New Tools for Targeted Drug Delivery:Â Synthesis, Characterization and Cellular Uptake. Biomacromolecules, 2006, 7, 146-153.	2.6	85
17	PEG-epirubicin Conjugates with High Drug Loading. Journal of Bioactive and Compatible Polymers, 2005, 20, 213-230.	0.8	78
18	Site-Specific Pegylation of G-CSF by Reversible Denaturation. Bioconjugate Chemistry, 2007, 18, 1824-1830.	1.8	78

GIANFRANCO PASUT

#	Article	IF	CITATIONS
19	Poly(ethylene glycol)–paclitaxel–alendronate self-assembled micelles for the targeted treatment of breast cancer bone metastases. Biomaterials, 2013, 34, 3795-3806.	5.7	76
20	Selective conjugation of poly(2-ethyl 2-oxazoline) to granulocyte colony stimulating factor. Journal of Controlled Release, 2012, 159, 353-361.	4.8	75
21	Pegylation for improving the effectiveness of therapeutic biomolecules. Drugs of Today, 2009, 45, 687.	0.7	75
22	PEGylation of Proteins as Tailored Chemistry for Optimized Bioconjugates. Advances in Polymer Science, 2005, , 95-134.	0.4	71
23	Relevance of folic acid/polymer ratio in targeted PEG–epirubicin conjugates. Journal of Controlled Release, 2010, 146, 388-399.	4.8	70
24	A new method to increase selectivity of transglutaminase mediated PEGylation of salmon calcitonin and human growth hormone. Journal of Controlled Release, 2011, 154, 27-34.	4.8	69
25	Polymers for Protein Conjugation. Polymers, 2014, 6, 160-178.	2.0	66
26	Chemical and Enzymatic Site Specific PEGylation of hGH. Bioconjugate Chemistry, 2013, 24, 456-463.	1.8	61
27	Conjugation of hyaluronan to proteins. Carbohydrate Polymers, 2013, 92, 2163-2170.	5.1	57
28	Poly(ethylene glycol)-Poly(ester-carbonate) Block Copolymers Carrying PEG-Peptidyl-Doxorubicin Pendant Side Chains:Â Synthesis and Evaluation as Anticancer Conjugates. Biomacromolecules, 2005, 6, 914-926.	2.6	54
29	The role and impact of polyethylene glycol on anaphylactic reactions to COVID-19 nano-vaccines. Nature Nanotechnology, 2021, 16, 1169-1171.	15.6	48
30	Nitric oxide modulates proapoptotic and antiapoptotic properties of chemotherapy agents: the case of NOâ€pegylated epirubicin. FASEB Journal, 2006, 20, 765-767.	0.2	47
31	PEGylation: Posttranslational bioengineering of protein biotherapeutics. Drug Discovery Today: Technologies, 2008, 5, e57-e64.	4.0	46
32	Protein PEGylation, basic science and biological applications. , 2009, , 11-31.		45
33	A hyaluronic acid–salmon calcitonin conjugate for the local treatment of osteoarthritis: Chondro-protective effect in a rabbit model of early OA. Journal of Controlled Release, 2014, 187, 30-38.	4.8	44
34	Inulin- <scp>d</scp> -α-Tocopherol Succinate (INVITE) Nanomicelles as a Platform for Effective Intravenous Administration of Curcumin. Biomacromolecules, 2015, 16, 550-557.	2.6	44
35	Polyethylene glycols: An effective strategy for limiting liver ischemia reperfusion injury. World Journal of Gastroenterology, 2016, 22, 6501.	1.4	44
36	Polymerâ^'Drug Conjugates for Combination Anticancer Therapy: Investigating the Mechanism of Action. Journal of Medicinal Chemistry, 2009, 52, 6499-6502.	2.9	43

GIANFRANCO PASUT

#	Article	IF	CITATIONS
37	Site-Specific Transglutaminase-Mediated Conjugation of Interferon α-2b at Glutamine or Lysine Residues. Bioconjugate Chemistry, 2016, 27, 2695-2706.	1.8	41
38	Grand Challenges in Nano-Based Drug Delivery. Frontiers in Medical Technology, 2019, 1, 1.	1.3	41
39	A New PEGâ~'β-Alanine Active Derivative for Releasable Protein Conjugation. Bioconjugate Chemistry, 2008, 19, 2427-2431.	1.8	40
40	Kinetic Interaction Analysis of Human Interleukin 5 Receptor α Mutants Reveals a Unique Binding Topology and Charge Distribution for Cytokine Recognition. Journal of Biological Chemistry, 2004, 279, 9547-9556.	1.6	39
41	Poly(ethylene glycol)-mesalazine conjugate for colon specific delivery. International Journal of Pharmaceutics, 2009, 368, 171-177.	2.6	37
42	Detection of sites of infection in mice using 99mTc-labeled PN2S-PEG conjugated to UBI and 99mTc-UBI: a comparative biodistribution study. Nuclear Medicine and Biology, 2009, 36, 57-64.	0.3	36
43	Drug and protein delivery by polymer conjugation. Journal of Drug Delivery Science and Technology, 2016, 32, 132-141.	1.4	35
44	Polysialic acid as a drug carrier: evaluation of a new polysialic acid–epirubicin conjugate and its comparison against established drug carriers. Polymer Chemistry, 2013, 4, 1600-1609.	1.9	33
45	A Biodegradable Polymeric Carrier Based on PEG for Drug Delivery. Journal of Bioactive and Compatible Polymers, 2009, 24, 220-234.	0.8	31
46	Polyethylene glycol rinse solution: An effective way to prevent ischemia-reperfusion injury. World Journal of Gastroenterology, 2014, 20, 16203.	1.4	31
47	Multivalent and Flexible PEG-Nitrilotriacetic Acid Derivatives for Non-covalent Protein Pegylation. Pharmaceutical Research, 2011, 28, 2412-2421.	1.7	30
48	Chemical and Enzymatic Site Specific PEGylation of hGH: The Stability and in vivo Activity of PEGâ€ <i>N</i> â€Terminalâ€hGH and PEGâ€Cln141â€hGH Conjugates. Macromolecular Bioscience, 2016, 16, 50	-56.	30
49	Cisplatin liposome and 6-amino nicotinamide combination to overcome drug resistance in ovarian cancer cells. Oncotarget, 2018, 9, 16847-16860.	0.8	30
50	Site-selective enzymatic chemistry for polymer conjugation to protein lysine residues: PEGylation of G-CSF at lysine-41. Polymer Chemistry, 2016, 7, 6545-6553.	1.9	29
51	Cardiac safety and antitumoral activity of a new nitric oxide derivative of pegylated epirubicin in mice. Anti-Cancer Drugs, 2007, 18, 1081-1091.	0.7	28
52	New active poly(ethylene glycol) derivative for amino coupling. Reactive and Functional Polymers, 2007, 67, 529-539.	2.0	27
53	CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo. Journal of Clinical Investigation, 2020, 130, 2435-2450.	3.9	27
54	Synthesis, characterization and preliminary cytotoxicity assays of poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 62 T	d (glycol)‑

4

GIANFRANCO PASUT

#	Article	lF	CITATIONS
55	Polyethylene glycol and a novel developed polyethylene glycol-nitric oxide normalize arteriolar response and oxidative stress in ischemia-reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1536-H1544.	1.5	26
56	Covalent immobilisation of transglutaminase: stability and applications in protein PEGylation. Journal of Drug Targeting, 2017, 25, 856-864.	2.1	26
57	Covalent Conjugation of Poly(Ethylene Glycol) to Proteins and Peptides: Strategies and Methods. Methods in Molecular Biology, 2011, 751, 95-129.	0.4	25
58	Polyethylene Glycol Preconditioning: An Effective Strategy to Prevent Liver Ischemia Reperfusion Injury. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.	1.9	23
59	Molecular platforms for targeted drug delivery. International Review of Cell and Molecular Biology, 2019, 346, 1-50.	1.6	22
60	A site-selective hyaluronan-interferonα2a conjugate for the treatment of ovarian cancer. Journal of Controlled Release, 2016, 236, 79-89.	4.8	19
61	PEG-metronidazole conjugates: synthesis, in vitro and in vivo properties. Il Farmaco, 2005, 60, 783-788.	0.9	18
62	Role of Proton Pump Inhibitor on Esophageal Carcinogenesis and Pancreatic Acinar Cell Metaplasia Development: An Experimental In Vivo Study. PLoS ONE, 2014, 9, e112862.	1.1	18
63	Drug conjugation to hyaluronan widens therapeutic indications for ovarian cancer. Oncoscience, 2015, 2, 373-381.	0.9	18
64	Highly Efficient Technetium-99m Labeling Procedure Based on the Conjugation of N-[N-(3-Diphenylphosphinopropionyl)glycyl]cysteine Ligand with Poly(ethylene glycol). Bioconjugate Chemistry, 2004, 15, 1046-1054.	1.8	17
65	Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation. BioMed Research International, 2015, 2015, 1-10.	0.9	17
66	Polyethylene glycol-based linkers as hydrophilicity reservoir for antibody-drug conjugates. Journal of Controlled Release, 2021, 337, 431-447.	4.8	15
67	Hyaluronan is a natural and effective immunological adjuvant for protein-based vaccines. Cellular and Molecular Immunology, 2021, 18, 1197-1210.	4.8	14
68	Thiol-Activated Anticancer Agents: The State of the Art. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 4-20.	0.9	14
69	Overcoming Cancer Cell Drug Resistance by a Folic Acid Targeted Polymeric Conjugate of Buthionine Sulfoximine. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 1513-1522.	0.9	13
70	Stabilization of a supplemental digestive enzyme by post-translational engineering using chemically-activated polyethylene glycol. Biotechnology Letters, 2011, 33, 617-621.	1.1	12
71	Folic Acid-Targeted Paclitaxel-Polymer Conjugates Exert Selective Cytotoxicity and Modulate Invasiveness of Colon Cancer Cells. Pharmaceutics, 2021, 13, 929.	2.0	12
72	Peritoneal Tumor Carcinomatosis: Pharmacological Targeting with Hyaluronan-Based Bioconjugates Overcomes Therapeutic Indications of Current Drugs. PLoS ONE, 2014, 9, e112240.	1.1	11

#	Article	IF	CITATIONS
73	Pharmacokinetic stability of macrocyclic peptide triazole HIVâ€1 inactivators alone and in liposomes. Journal of Peptide Science, 2019, 25, e3155.	0.8	11
74	Evolution of polymer conjugation to proteins. , 2020, , 3-22.		11
75	The evolution of polymer conjugation and drug targeting for the delivery of proteins and bioactive molecules. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1689.	3.3	11
76	Hyaluronic Acid as a Protein Polymeric Carrier: An Overview and a Report on Human Growth Hormone. Current Drug Targets, 2015, 16, 1503-1511.	1.0	11
77	Actin-Resistant DNase1L2 as a Potential Therapeutics for CF Lung Disease. Biomolecules, 2021, 11, 410.	1.8	9
78	PHEA-graft-polymethacrylate supramolecular aggregates for protein oral delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 21-28.	2.0	8
79	A novel PEG–haloperidol conjugate with a non-degradable linker shows the feasibility of using polymer–drug conjugates in a non-prodrug fashion. Polymer Chemistry, 2016, 7, 7204-7210.	1.9	8
80	Transgultaminase-Mediated Nanoarmoring of Enzymes by PEGylation. Methods in Enzymology, 2017, 590, 317-346.	0.4	8
81	Poly(L-glutamic acid)-co-poly(ethylene glycol) block copolymers for protein conjugation. Journal of Controlled Release, 2020, 324, 228-237.	4.8	8
82	Improvement of Drug Therapy by Covalent PEG Conjugation: An Overview From a Research Laboratory. Israel Journal of Chemistry, 2010, 50, 151-159.	1.0	7
83	Transglutaminase and Sialyltransferase Enzymatic Approaches for Polymer Conjugation to Proteins. Advances in Protein Chemistry and Structural Biology, 2018, 112, 123-142.	1.0	7
84	A non-covalent antibody complex for the delivery of anti-cancer drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 49-60.	2.0	7
85	A Protein Engineering Approach Differentiates the Functional Importance of Carbohydrate Moieties of Interleukin-5 Receptor α. Biochemistry, 2011, 50, 7546-7556.	1.2	6
86	Enzymatic Formation of PEGylated Oligonucleotides. Bioconjugate Chemistry, 2014, 25, 433-441.	1.8	6
87	Conjugation to PEG as a Strategy to Limit the Uptake of Drugs by the Placenta: Potential Applications for Drug Administration in Pregnancy. Molecular Pharmaceutics, 2021, , .	2.3	6
88	Basic Strategies for PEGylation of Peptide and Protein Drugs. , 2006, , 53-84.		5
89	Drug–Polymer Conjugates. , 2007, , 1043-1068.		4
90	Novel super stealth immunoliposomes for cancer targeted delivery of doxorubicin: an innovative strategy to reduce liver toxicity. Digestive and Liver Disease, 2019, 51, e21.	0.4	4

#	Article	IF	CITATIONS
91	The Influence of Initiator Concentration on Selected Properties of Thermosensitive Poly(Acrylamide-co-2-Acrylamido-2-Methyl-1-Propanesulfonic Acid) Microparticles. Polymers, 2021, 13, 996.	2.0	4
92	Poly(ethylene glycol)-Protein, Peptide, and Enzyme Conjugates. , 2010, , 265-288.		3
93	Enzymatic approaches to new protein conjugates. , 2020, , 271-295.		3
94	Challenges in the analytical characterization of PEGylated asparaginase. , 2020, , 205-231.		3
95	A rhabdomyosarcoma hydrogel model to unveil cell-extracellular matrix interactions. Biomaterials Science, 2021, 10, 124-137.	2.6	3
96	Original and generic preservation solutions in organ transplantation. A new paradigm?. Acta Cirurgica Brasileira, 2020, 35, e202000101.	0.3	2
97	PEGylated Proteins as Cancer Therapeutics. , 2006, , 85-110.		1
98	PEC: a useful technology in anticancer therapy. , 2009, , 255-271.		1
99	PEGylated \hat{I}_{\pm} interferons: two different strategies to achieve increased efficacy. , 2009, , 205-216.		1
100	Protein PEGylation. , 2012, , 295-313.		1
101	Liver Graft Washout Prevents Against Reperfusion Injury: Protective Effects on Glycocalyx and Cytoskeleton. Transplantation, 2012, 94, 579.	0.5	1
102	Development of a new hyaluronic acid-calcitonin conjugate for the local treatment of osteoarthritis. Osteoarthritis and Cartilage, 2014, 22, S475-S476.	0.6	1
103	Efficacy of PEGylated ciliary neurotrophic factor superagonist variant in diet-induced obesity mice. PLoS ONE, 2022, 17, e0265749.	1.1	1
104	FRI-082-Super stealth immunoliposomes as a strategy to overcome liposome-induced liver toxicity. Journal of Hepatology, 2019, 70, e420-e421.	1.8	0
105	A novel HER2-targeted liposomal formulation reduces the risk of hepatotoxicity induced by PEC-based anticancer drugs. Digestive and Liver Disease, 2020, 52, e30-e31.	0.4	0
106	Abstract B192: The EPR effect of CDP-tubulysin in the recurrence of lung and pancreatic cancers. , 2018, , .		0