List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6584541/publications.pdf Version: 2024-02-01



ACNIESZKA I PAMUCKA

| #  | Article                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Conductivity study of a gelatin-based polymer electrolyte. Electrochimica Acta, 2007, 53, 1404-1408.                                                    | 2.6 | 168       |
| 2  | Agar-based films for application as polymer electrolytes. Electrochimica Acta, 2010, 55, 1455-1459.                                                     | 2.6 | 150       |
| 3  | Plasticized pectin-based gel electrolytes. Electrochimica Acta, 2009, 54, 6479-6483.                                                                    | 2.6 | 116       |
| 4  | Influence of Plasticizer Type on the Properties of Polymer Electrolytes Based on Chitosan. Journal of<br>Physical Chemistry A, 2008, 112, 8888-8895.    | 1.1 | 110       |
| 5  | All solid-state electrochromic devices with gelatin-based electrolyte. Solar Energy Materials and Solar Cells, 2008, 92, 228-233.                       | 3.0 | 86        |
| 6  | Dielectric behavior and FTIR studies of xanthan gum-based solid polymer electrolytes. Electrochimica<br>Acta, 2019, 305, 232-239.                       | 2.6 | 85        |
| 7  | Synthesis of multicolor Nb2O5 coatings for electrochromic devices. Thin Solid Films, 1997, 301, 236-241.                                                | 0.8 | 79        |
| 8  | Investigation of polymer electrolyte based on agar and ionic liquids. EXPRESS Polymer Letters, 2012, 6, 1007-1016.                                      | 1.1 | 77        |
| 9  | Amylopectin-rich starch plasticized with glycerol for polymer electrolyte application. Solid State lonics, 2010, 181, 586-591.                          | 1.3 | 71        |
| 10 | Characteristics of gellan gum–LiCF3SO3 polymer electrolytes. Solid State Ionics, 2012, 225, 649-653.                                                    | 1.3 | 71        |
| 11 | Nuclear magnetic resonance and conductivity study of starch based polymer electrolytes.<br>Electrochimica Acta, 2003, 48, 2021-2027.                    | 2.6 | 66        |
| 12 | Solid-state electrochromic devices with Nb2O5:Mo thin film and gelatin-based electrolyte.<br>Electrochimica Acta, 2007, 53, 1648-1654.                  | 2.6 | 63        |
| 13 | Preparation of transparent CeO2–TiO2 coatings for electrochromic devices. Thin Solid Films, 1998, 335, 245-248.                                         | 0.8 | 61        |
| 14 | Ionic Conductivity Thermogravimetry Measurements of Starch-Based Polymeric Electrolytes.<br>Molecular Crystals and Liquid Crystals, 2008, 485, 804-816. | 0.4 | 57        |
| 15 | Influence of plasticizer contents on the properties of HEC-based solid polymeric electrolytes.<br>Electrochimica Acta, 2005, 50, 3827-3831.             | 2.6 | 56        |
| 16 | WO <sub>3</sub> Nanorods Created by Self-Assembly of Highly Crystalline Nanowires under<br>Hydrothermal Conditions. Langmuir, 2014, 30, 10487-10492.    | 1.6 | 56        |
| 17 | Gelatin-based protonic electrolyte for electrochromic windows. Ionics, 2010, 16, 13-19.                                                                 | 1.2 | 55        |
| 18 | Prussian blue for electrochromic devices. Journal of Electroanalytical Chemistry, 2016, 777, 33-39.                                                     | 1.9 | 55        |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Preparation and characterization of starch grafted with toluene poly (propylene oxide) diisocyanate.<br>Materials Research, 2001, 4, 77-81.                                                                   | 0.6 | 52        |
| 20 | Hydroxypropyl cellulose-based gel electrolyte for electrochromic devices. Electrochimica Acta, 2015, 159, 227-233.                                                                                            | 2.6 | 52        |
| 21 | Novel polymer electrolytes based on gelatin and ionic liquids. Optical Materials, 2012, 35, 187-195.                                                                                                          | 1.7 | 51        |
| 22 | Synthesis and characterization of gellan gum: chitosan biohydrogels for soil humidity control and fertilizer release. Cellulose, 2015, 22, 2045-2054.                                                         | 2.4 | 50        |
| 23 | Two methods of obtaining sol–gel Nb2O5 thin films for electrochromic devices. Journal of Materials<br>Science, 1998, 33, 2181-2185.                                                                           | 1.7 | 49        |
| 24 | Thermal–mechanical behaviour of chitosan–cellulose derivative thermoreversible hydrogel films.<br>Cellulose, 2015, 22, 1911-1929.                                                                             | 2.4 | 49        |
| 25 | Optimization of performances of gelatin/LiBF4-based polymer electrolytes by plasticizing effects.<br>Electrochimica Acta, 2010, 55, 1489-1494.                                                                | 2.6 | 48        |
| 26 | A green-yellow reflective electrochromic device. Electrochimica Acta, 2013, 111, 299-304.                                                                                                                     | 2.6 | 48        |
| 27 | Electrochromic properties of Nb2O5 sol–gel coatings. Solar Energy Materials and Solar Cells, 1998, 54, 9-17.                                                                                                  | 3.0 | 47        |
| 28 | Ionically conducting DNA-based membranes for eletrochromic devices. Synthetic Metals, 2011, 161, 2329-2334.                                                                                                   | 2.1 | 47        |
| 29 | DNA – novel nanomaterial for applications in photonics and in electronics. Comptes Rendus Physique, 2012, 13, 853-864.                                                                                        | 0.3 | 47        |
| 30 | Electrochromism in materials prepared by the sol-gel process. Journal of Sol-Gel Science and Technology, 1997, 8, 689-696.                                                                                    | 1.1 | 43        |
| 31 | Development of polyacrylonitrile-based polymer electrolytes incorporated with lithium<br>bis(trifluoromethane)sulfonimide for application in electrochromic device. Electrochimica Acta, 2017,<br>229, 22-30. | 2.6 | 43        |
| 32 | Gellan Gum-Lil Gel Polymer Electrolytes. Molecular Crystals and Liquid Crystals, 2012, 554, 232-238.                                                                                                          | 0.4 | 42        |
| 33 | Effect of storage time on the ionic conductivity of chitosan-solid polymer electrolytes incorporating cyano-based ionic liquids. Electrochimica Acta, 2017, 232, 22-29.                                       | 2.6 | 42        |
| 34 | Solid polymer electrolytes based on chitosan and europium triflate. Journal of Non-Crystalline<br>Solids, 2016, 432, 307-312.                                                                                 | 1.5 | 40        |
| 35 | Nuclear magnetic resonance and conductivity study of HEC/polyether-based polymer electrolytes.<br>Electrochimica Acta, 2001, 46, 1665-1672.                                                                   | 2.6 | 38        |
| 36 | Agar-Based Gel Electrolyte for Electrochromic Device Application. Molecular Crystals and Liquid<br>Crystals, 2012, 554, 264-272.                                                                              | 0.4 | 38        |

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Starch Based Solid Polymeric Electrolytes. Molecular Crystals and Liquid Crystals, 2002, 374, 561-568.                                                                     | 0.4 | 37        |
| 38 | Electrochromic Devices with Solid Electrolytes based on Natural Polymers. Molecular Crystals and<br>Liquid Crystals, 2004, 416, 105-112.                                   | 0.4 | 37        |
| 39 | Ion-Conducting Membranes Based on Gelatin and Containing Lil/I <sub>2</sub> for Electrochromic<br>Devices. Molecular Crystals and Liquid Crystals, 2012, 554, 239-251.     | 0.4 | 36        |
| 40 | Thermo-sensitive chitosan–cellulose derivative hydrogels: swelling behaviour and morphologic studies. Cellulose, 2014, 21, 4531-4544.                                      | 2.4 | 34        |
| 41 | Alternative Nb2O5-TiO2 thin films for electrochromic devices. Journal of Materials Science, 2001, 36, 1407-1410.                                                           | 1.7 | 33        |
| 42 | The CeO2–TiO2–ZrO2 sol–gel film: a counter-electrode for electrochromic devices. Thin Solid Films, 2005, 471, 100-104.                                                     | 0.8 | 33        |
| 43 | Sodium Alginate-Based Ionic Conducting Membranes. Molecular Crystals and Liquid Crystals, 2012, 554, 221-231.                                                              | 0.4 | 32        |
| 44 | Development of Electrochromic Devices. Recent Patents on Nanotechnology, 2009, 3, 177-181.                                                                                 | 0.7 | 31        |
| 45 | Study and Characterization of a Novel Polymer Electrolyte Based on Agar Doped with Magnesium<br>Triflate. Molecular Crystals and Liquid Crystals, 2013, 570, 1-11.         | 0.4 | 31        |
| 46 | Magnetic resonance study of chitosan bio-membranes with proton conductivity properties. Journal of Membrane Science, 2013, 429, 190-196.                                   | 4.1 | 31        |
| 47 | Nuclear magnetic resonance and conductivity study of hydroxyethylcellulose based polymer gel<br>electrolytes. Electrochimica Acta, 2005, 50, 3978-3984.                    | 2.6 | 30        |
| 48 | Magnetic resonance and conductivity study of gelatin-based proton conductor polymer electrolytes.<br>Electrochimica Acta, 2010, 55, 1396-1400.                             | 2.6 | 30        |
| 49 | Cellulose derivatives as solid electrolyte matrixes. Macromolecular Symposia, 2001, 175, 45-54.                                                                            | 0.4 | 29        |
| 50 | Influence of cerium triflate and glycerol on electrochemical performance of chitosan electrolytes for electrochromic devices. Electrochimica Acta, 2016, 217, 108-116.     | 2.6 | 29        |
| 51 | Study of the conductivity of solid polymeric electrolyte based on PVA/GA blend with addition of acetic acid. Journal of Solid State Electrochemistry, 2020, 24, 1867-1875. | 1.2 | 29        |
| 52 | Polymer electrolytes for electrochromic devices through solvent casting and sol-gel routes. Solar<br>Energy Materials and Solar Cells, 2017, 169, 98-106.                  | 3.0 | 28        |
| 53 | New thin films of NiO doped with V 2 O 5 for electrochromic applications. Journal of Physics and Chemistry of Solids, 2017, 110, 30-35.                                    | 1.9 | 27        |
| 54 | Poly(3-n-Butylthiophene) tetrachloroferrate: Preparation, spectroscopic and morphological studies.<br>Synthetic Metals, 1989, 30, 335-339.                                 | 2.1 | 26        |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | DSC and solid state NMR characterization of hydroxyethylcellulose/polyether films. Polymer<br>International, 2000, 49, 960-964.                                                                                               | 1.6 | 26        |
| 56 | Enhancement of Electrical Conductivity in Plasticized Chitosan Based Membranes. Molecular Crystals<br>and Liquid Crystals, 2012, 554, 150-159.                                                                                | 0.4 | 26        |
| 57 | Gellan gum—Ionic liquid membranes for electrochromic device application. Solid State Ionics, 2015, 274, 64-70.                                                                                                                | 1.3 | 26        |
| 58 | Brown coloring electrochromic devices based on NiO–TiO2 layers. Solar Energy Materials and Solar<br>Cells, 2006, 90, 3583-3601.                                                                                               | 3.0 | 25        |
| 59 | NMR study of starch based polymer gel electrolytes: Humidity effects. Electrochimica Acta, 2007, 53, 1461-1465.                                                                                                               | 2.6 | 25        |
| 60 | Photoluminescent polymer electrolyte based on agar and containing europium picrate for<br>electrochemical devices. Materials Science and Engineering B: Solid-State Materials for Advanced<br>Technology, 2012, 177, 488-493. | 1.7 | 25        |
| 61 | Thin films of V2O5/MoO3 and their applications in electrochromism. Journal of Solid State Electrochemistry, 2017, 21, 1509-1515.                                                                                              | 1.2 | 25        |
| 62 | Influence of the Nb2O5 doping on the electrochemical properties of V2O5 thin films. Journal of Electroanalytical Chemistry, 2017, 790, 50-56.                                                                                 | 1.9 | 25        |
| 63 | Samarium (III) triflate-doped chitosan electrolyte for solid state electrochromic devices.<br>Electrochimica Acta, 2018, 267, 51-62.                                                                                          | 2.6 | 24        |
| 64 | Electrochemical properties of WO3 sol-gel thin films on indium tin oxide/poly(ethylene terephthalate)<br>substrate. Thin Solid Films, 2019, 683, 8-15.                                                                        | 0.8 | 23        |
| 65 | Gelatin <sub><i>n</i></sub> Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> Polymer Electrolytes for Electrochromic Devices. Electroanalysis, 2013, 25, 1483-1490.                                                          | 1.5 | 22        |
| 66 | Properties of Electrodeposited WO <sub>3</sub> Thin Films. Molecular Crystals and Liquid Crystals, 2014, 604, 71-83.                                                                                                          | 0.4 | 22        |
| 67 | Ecologically friendly xanthan gum-PVA matrix for solid polymeric electrolytes. Ionics, 2018, 24, 413-420.                                                                                                                     | 1.2 | 22        |
| 68 | Nuclear magnetic resonance study of PEO–chitosan based polymer electrolytes. Electrochimica Acta,<br>2007, 53, 1455-1460.                                                                                                     | 2.6 | 21        |
| 69 | Green polymer electrolytes of chitosan doped with erbium triflate. Journal of Non-Crystalline Solids, 2018, 482, 183-191.                                                                                                     | 1.5 | 21        |
| 70 | Synthesis of Nb2O5 thin films for electrochromic devices. Journal of Materials Science Letters, 1995, 14, 1568-1570.                                                                                                          | 0.5 | 20        |
| 71 | A.C Impedance, X-ray Diffraction and DSC Investigation on Gelatin Based-Electrolyte with<br>LiClO <sub>4</sub> . Molecular Crystals and Liquid Crystals, 2008, 485, 843-852.                                                  | 0.4 | 20        |
| 72 | Ionic liquids for solid-state electrolytes and electrosynthesis. Journal of Electroanalytical<br>Chemistry, 2014, 714-715, 63-69.                                                                                             | 1.9 | 20        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Structural, morphological, ionic conductivity, and thermal properties of pectin-based polymer electrolytes. Molecular Crystals and Liquid Crystals, 2017, 643, 266-273.                                 | 0.4 | 20        |
| 74 | Characterization of an all Sol-Gel Electrochromic Device WO3/Ormolyte/CeO2-TiO2. Journal of Sol-Gel Science and Technology, 2000, 19, 447-451.                                                          | 1.1 | 19        |
| 75 | Ionically conducting Er3+-doped DNA-based biomembranes for electrochromic devices. Electrochimica Acta, 2014, 120, 327-333.                                                                             | 2.6 | 19        |
| 76 | Electrochromic device with Prussian blue and HPC-based electrolyte. Electrochimica Acta, 2015, 182, 878-883.                                                                                            | 2.6 | 19        |
| 77 | Innovative electrolytes based on chitosan and thulium for solid state applications: Synthesis,<br>structural, and thermal characterization. Journal of Electroanalytical Chemistry, 2017, 788, 156-164. | 1.9 | 19        |
| 78 | Polymer electrolytes based on natural polymers. , 2010, , 95-128.                                                                                                                                       |     | 18        |
| 79 | Magnetic resonance and conductivity study of a gelatin-based polymer gel electrolyte. Electrochimica<br>Acta, 2011, 57, 187-191.                                                                        | 2.6 | 18        |
| 80 | Smart Windows Prepared from <i>Bombyx mori</i> Silk. ChemElectroChem, 2016, 3, 1084-1097.                                                                                                               | 1.7 | 18        |
| 81 | Pectin-based Polymer Electrolytes with Ir(III) Complexes. Molecular Crystals and Liquid Crystals, 2014, 604, 117-125.                                                                                   | 0.4 | 16        |
| 82 | Effect of the alkyl chain length of the ionic liquid anion on polymer electrolytes properties.<br>Electrochimica Acta, 2015, 184, 171-178.                                                              | 2.6 | 16        |
| 83 | NMR and Conductivity Study of Gelatin-Based Polymer Electrolytes. Molecular Crystals and Liquid Crystals, 2008, 483, 120-129.                                                                           | 0.4 | 15        |
| 84 | DNA-based ionic conducting membranes. Journal of Applied Physics, 2011, 110, 033704.                                                                                                                    | 1.1 | 15        |
| 85 | Characterization of flexible DNA films. Electrochemistry Communications, 2012, 22, 189-192.                                                                                                             | 2.3 | 15        |
| 86 | Electro-optical properties of the DNA-Eu3+ bio-membranes. Journal of Electroanalytical Chemistry, 2013, 708, 116-123.                                                                                   | 1.9 | 15        |
| 87 | Preparation, thermal characterization, and DFT study of the bacterial cellulose. Journal of Thermal Analysis and Calorimetry, 2014, 118, 205-215.                                                       | 2.0 | 15        |
| 88 | Playing with ionic liquids to uncover novel polymer electrolytes. Solid State Ionics, 2017, 300, 46-52.                                                                                                 | 1.3 | 15        |
| 89 | Synthesis and characterization of solid polymer electrolyte based on poly(vinyl alcohol)/gum<br>Arabic/LiClO4. Ionics, 2020, 26, 2941-2948.                                                             | 1.2 | 15        |
| 90 | Carboxymethylcellulose derivatives with low hydrophilic properties. Polimery, 2003, 48, 273-279.                                                                                                        | 0.4 | 15        |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | DNA-based membranes for potential applications. Ionics, 2015, 21, 1381-1390.                                                                                                                    | 1.2 | 14        |
| 92  | Effect of polymer molecular weight on Langmuir monolayers and the deposition of Langmuir-Blodgett films of poly(3-butylthiophene) and stearic acid. Thin Solid Films, 1994, 244, 723-727.       | 0.8 | 13        |
| 93  | Optoelectrochemical Characterization of Electrochromic Devices with Starch Based Solid Electrolytes. Molecular Crystals and Liquid Crystals, 2006, 447, 45/[363]-53/[371].                      | 0.4 | 13        |
| 94  | Spectroscopic and microscopic study of Prussian blue film for electrochromic device application.<br>Electrochimica Acta, 2015, 175, 176-183.                                                    | 2.6 | 13        |
| 95  | Solid polymer electrolytes based on chitosan and Dy(CF3SO3)3 for electrochromic devices. Solid State Ionics, 2017, 310, 112-120.                                                                | 1.3 | 13        |
| 96  | Microbial origin xanthan gumâ€based solid polymer electrolytes. Journal of Applied Polymer Science,<br>2018, 135, 46229.                                                                        | 1.3 | 13        |
| 97  | Gellan gum– <i>O,O</i> â€2â€bis(2â€aminopropyl)â€polyethylene glycol hydrogel for controlled fertilizer<br>release. Journal of Applied Polymer Science, 2018, 135, 45636.                       | 1.3 | 13        |
| 98  | Determination of thermal parameters and the optical gap of poly(3â€butylthiophene) films by photopyroelectric spectroscopy. Journal of Applied Physics, 1993, 74, 979-982.                      | 1.1 | 12        |
| 99  | Thermal-history-dependent transition in pressed pellets ofClO4â^'-doped poly(3-methylthiophene).<br>Physical Review B, 1994, 50, 3648-3651.                                                     | 1.1 | 12        |
| 100 | Luminescent polymer electrolytes based on chitosan and containing europium triflate. Journal of<br>Rare Earths, 2016, 34, 661-666.                                                              | 2.5 | 12        |
| 101 | Electrochemical, UV–Vis, and microscopical characteristics of sol–gel CeO2:V2O5 thin film. Journal of Materials Science: Materials in Electronics, 2018, 29, 16911-16920.                       | 1.1 | 12        |
| 102 | Study of ionically conducting nanocomposites for reflective electrochromic devices. Electrochimica<br>Acta, 2019, 301, 174-182.                                                                 | 2.6 | 12        |
| 103 | Impact of Zr precursor on the electrochemical properties of V2O5 sol-gel films. Journal of Electroanalytical Chemistry, 2019, 839, 67-74.                                                       | 1.9 | 12        |
| 104 | Polymer electrolyte based on DNA and N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium<br>bis(trifluoromethylsulfonyl)imide. Journal of Electroanalytical Chemistry, 2015, 748, 70-75.                 | 1.9 | 11        |
| 105 | Influence of DNA and DNA-PEDOT: PSS on dye sensitized solar cell performance. Molecular Crystals and Liquid Crystals, 2016, 627, 38-48.                                                         | 0.4 | 11        |
| 106 | A luminescent europium ionic liquid to improve the performance of chitosan polymer electrolytes.<br>Electrochimica Acta, 2017, 240, 474-485.                                                    | 2.6 | 11        |
| 107 | Electrochemical properties of thin films of V 2 O 5 doped with TiO 2. Journal of Physics and Chemistry of Solids, 2018, 119, 1-8.                                                               | 1.9 | 11        |
| 108 | Molybdenum doping effect on sol-gel Nb2O5:Li+ thin films: Investigation of structural, optical and electrochromic properties. Materials Science in Semiconductor Processing, 2021, 134, 105995. | 1.9 | 11        |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Thin Film Sol-Gel of CeO <sub>2</sub> -ZrO <sub>2</sub> : The Candidate for Counter Electrode in Electrochromic Devices. Molecular Crystals and Liquid Crystals, 2000, 354, 463-473.                | 0.3 | 10        |
| 110 | Gelatin- and DNA-based ionic conducting membranes for electrochromic devices. Proceedings of SPIE, 2009, , .                                                                                        | 0.8 | 10        |
| 111 | Gelatin-HCl biomembranes with ionic-conducting properties. Ionics, 2013, 19, 1723-1731.                                                                                                             | 1.2 | 10        |
| 112 | Influence of the NiO nanoparticles on the ionic conductivity of the agar-based electrolyte. Polimeros, 2014, 24, 8-12.                                                                              | 0.2 | 10        |
| 113 | Bacterial cellulose/triethanolamine based ion-conducting membranes. Cellulose, 2014, 21, 1975.                                                                                                      | 2.4 | 10        |
| 114 | Luminescent DNA- and Agar-Based Membranes. Journal of Nanoscience and Nanotechnology, 2014, 14,<br>6685-6691.                                                                                       | 0.9 | 10        |
| 115 | Chromophore doped DNA based solid polymer electrolyte for electrochromic devices. Arabian Journal of Chemistry, 2017, 10, 232-239.                                                                  | 2.3 | 10        |
| 116 | Chitosan polymer electrolytes doped with a dysprosium ionic liquid. Journal of Polymer Research, 2020, 27, 1.                                                                                       | 1.2 | 10        |
| 117 | Functional novel polymer electrolytes containing europium picrate. Materials Research Innovations, 2011, 15, s3-s7.                                                                                 | 1.0 | 9         |
| 118 | Impedance Analysis of Gellan Gum - Poly(vinyl pyrrolidone) Membranes. Molecular Crystals and Liquid<br>Crystals, 2014, 604, 84-95.                                                                  | 0.4 | 9         |
| 119 | Gigahertz Conductivity of Pressed Pellets of ClOâ^'4–Doped Poly(3-methylthiophene) Obtained from<br>Electron Spin Resonance Measurements. Journal of Magnetic Resonance Series A, 1994, 108, 62-64. | 1.6 | 8         |
| 120 | Electrochromic Windows with PVB Electrolytes. Molecular Crystals and Liquid Crystals, 2014, 604, 107-116.                                                                                           | 0.4 | 8         |
| 121 | Li <sup>+</sup> ions diffusion coefficient in V <sub>2</sub> O <sub>5</sub> :MoO <sub>3</sub> Sol-Gel<br>films. Molecular Crystals and Liquid Crystals, 2017, 655, 61-70.                           | 0.4 | 8         |
| 122 | Gellanâ€Gum and LiTFSIâ€Based Solid Polymer Electrolytes for Electrochromic Devices. ChemistrySelect,<br>2021, 6, 5110-5119.                                                                        | 0.7 | 8         |
| 123 | Sol-Gel Coatings of Nb 2 O 5 and Nb 2 O 5 :Li + :Electrochemical and Structural Characterization.<br>Molecular Crystals and Liquid Crystals, 2002, 374, 101-106.                                    | 0.4 | 7         |
| 124 | Reversible light-induced solubility of disperse red 1 dye in a hydroxypropyl cellulose matrix.<br>Cellulose, 2018, 25, 2083-2090.                                                                   | 2.4 | 7         |
| 125 | Alginate-Jeffamine Covalently Crosslinked Hydrogel. Molecular Crystals and Liquid Crystals, 2014, 603, 240-247.                                                                                     | 0.4 | 6         |
| 126 | Chitosan and Ionic Liquid Based Solid Polymer Electrolytes: The Anion Alkyl Chain Length Effect. ECS<br>Transactions, 2014, 61, 51-59.                                                              | 0.3 | 6         |

| #   | Article                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Proton mobility and copper coordination in polysaccharide- and gelatin-based bioblends and polyblends. Cellulose, 2014, 21, 2247-2259.                                   | 2.4 | 6         |
| 128 | Electrochromic Devices with Starch Based Solid Polymeric Electrolytes. , 2002, , 255-258.                                                                                |     | 6         |
| 129 | Non ohmic gigahertz conductivity in pressed pellets of doped poly(3-methylthiophene). Solid State<br>Communications, 1994, 91, 953-956.                                  | 0.9 | 5         |
| 130 | Kinetics of crystallization in conducting polymers observed from electron spin resonance. Journal of<br>Chemical Physics, 1998, 109, 8729-8730.                          | 1.2 | 5         |
| 131 | Caracterização de filmes finos de Nb2O5 com propriedades eletrocrômicas. Quimica Nova, 1998, 21,<br>365-367.                                                             | 0.3 | 5         |
| 132 | Electrochromic Properties of Sol-gel Coating of Nb2O5 and Nb2O5:Li+. Materials Research, 2002, 5, 43-46.                                                                 | 0.6 | 5         |
| 133 | <title>Solid polymeric electrolytes obtained from modified natural polymers</title> . , 2003, , .                                                                        |     | 5         |
| 134 | Conductivity and Thermal Analysis Studies of Solid Polymeric Electrolytes Based on Plasticized<br>Hydroxyethyl Cellulose. E-Polymers, 2007, 7, .                         | 1.3 | 5         |
| 135 | Electrochemical Applications of Electrolytes based on Ionic Liquids. ECS Transactions, 2013, 45, 235-244.                                                                | 0.3 | 5         |
| 136 | DNA- and DNA-CTMA: novel bio-nanomaterials for application in photonics and in electronics.<br>Proceedings of SPIE, 2013, , .                                            | 0.8 | 5         |
| 137 | Latest advances in biomaterials: from deoxyribonucleic acid to nucleobases. , 2014, , .                                                                                  |     | 5         |
| 138 | Ion conducting and paramagnetic d-PCL(530)/siloxane-based biohybrids doped with Mn2+ ions.<br>Electrochimica Acta, 2016, 211, 804-813.                                   | 2.6 | 5         |
| 139 | Influence of molybdenum trioxide thin film thickness on its electrochemical properties. Molecular<br>Crystals and Liquid Crystals, 2017, 655, 40-50.                     | 0.4 | 5         |
| 140 | Zirconium phosphate protonic conductor obtained by sonocatalytic sol-gel method. Journal of<br>Materials Science Letters, 1995, 14, 1486-1489.                           | 0.5 | 4         |
| 141 | Hidroxietil celulose enxertada com poliéteres. Polimeros, 1999, 9, 45-50.                                                                                                | 0.2 | 4         |
| 142 | Lithium Intercalation in CeO2-TiO2 Thin Film. Molecular Crystals and Liquid Crystals, 2004, 415, 221-227.                                                                | 0.4 | 4         |
| 143 | NMR and Conductivity Study of Starch BasedPolymer Gel Electrolytes. Molecular Crystals and Liquid Crystals, 2006, 447, 55/[373]-64/[382].                                | 0.4 | 4         |
| 144 | Optical and Electrochemical Properties of SnO2:Sb Thin Films Prepared by the Sol-Gel Process.<br>Molecular Crystals and Liquid Crystals, 2006, 447, 243/[561]-250/[568]. | 0.4 | 4         |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Ionic, paramagnetic and photophysical properties of a new biohybrid material incorporating copper perchlorate. Electrochimica Acta, 2015, 173, 76-81.                                                   | 2.6 | 4         |
| 146 | Functional Smart Dispersed Liquid Crystals for Nano- and Biophotonic Applications:<br>Nanoparticles-Assisted Optical Bioimaging. Journal of Nanomaterials, 2016, 2016, 1-9.                             | 1.5 | 4         |
| 147 | Structural, morphological, thermal and electrochemical characteristics of chitosan: praseodymium triflate based solid polymer electrolytes. International Journal of Green Energy, 2019, 16, 1602-1610. | 2.1 | 4         |
| 148 | Study of the effect of LiClO4 concentration on the ionic transport of solid polymer electrolyte based on poly(vinyl alcohol)/gum Arabic. Ionics, 2022, 28, 2715-2729.                                   | 1.2 | 4         |
| 149 | Polymer Electrolytes Derived from Hydroxiethylcellulose/Polyether Films. Molecular Crystals and Liquid Crystals, 2000, 353, 181-189.                                                                    | 0.3 | 3         |
| 150 | Physics and applications of electrochromic devices. , 2003, 4986, 117.                                                                                                                                  |     | 3         |
| 151 | Natural Membranes for Application in Biomedical Devices. Molecular Crystals and Liquid Crystals, 2012, 562, 147-155.                                                                                    | 0.4 | 3         |
| 152 | Influence of Li+:V2O5 doping on Nb2O5 thin films electrochemical performance. Molecular Crystals and Liquid Crystals, 2017, 655, 71-78.                                                                 | 0.4 | 3         |
| 153 | Nanocomposite Polymer Electrolytes of Sodium Alginate and Montmorillonite Clay. Molecules, 2021, 26, 2139.                                                                                              | 1.7 | 3         |
| 154 | Influence of weathering and temperature on the electrochemical and microscopical characteristics of CeO2 and CeO2:V2O5 sol-gel thin films. Materials Research Bulletin, 2021, 142, 111432.              | 2.7 | 3         |
| 155 | Metal–insulator transitions in pressed pellets of BF <sup>â^'</sup> <sub>4</sub> doped<br>poly(3-methylthiophene). Phase Transitions, 1997, 62, 157-165.                                                | 0.6 | 2         |
| 156 | Crystallization observed from the spin behavior in poly(3-methylthiophene). Synthetic Metals, 1999, 101, 355.                                                                                           | 2.1 | 2         |
| 157 | Lithium Diffusion into Nb2O5and Nb2O5:Li+Thin Films Prepared by Sol Gel Method. Molecular Crystals<br>and Liquid Crystals, 2008, 483, 283-293.                                                          | 0.4 | 2         |
| 158 | Binary Ce(III) and Li(I) triflate salt composition for solid polymer electrolytes. Ionics, 2018, 24, 2321-2334.                                                                                         | 1.2 | 2         |
| 159 | The electrochromic device performance with DNA based electrolyte. Materials Chemistry and Physics, 2020, 241, 122349.                                                                                   | 2.0 | 2         |
| 160 | Surface Relief Grating on Chitosan-N,N-dimethyl-4-(2-pyridylazo)aniline Thin Film. Polymers, 2022, 14,<br>791.                                                                                          | 2.0 | 2         |
| 161 | Photopyroelectric spectroscopy of poly(3-butylthiophene) films. Synthetic Metals, 1993, 55, 269-274.                                                                                                    | 2.1 | 1         |
| 162 | Title is missing!. Journal of Materials Science Letters, 1998, 17, 511-513.                                                                                                                             | 0.5 | 1         |

| #   | ARTICLE                                                                                                                                                                                                                                                                                         | IF                                                         | CITATIONS               |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------|
| 163 | <title>Preparation and characterization of lithium-doped and undoped&lt;br&gt;CeO&lt;formula&gt;&lt;inf&gt;&lt;roman&gt;2&lt;/roman&gt;&lt;/inf&gt;&lt;/formula&gt;-TiO&lt;formula&gt;&lt;inf&gt;&lt;roman&gt;2&lt;/roman&gt;&lt;/inf&gt;&lt;/formul&lt;br&gt;films</title> ., 2000, 3943, 306. | a>-ZrO <fc< td=""><td>ormula&gt;<inf>&lt;</inf></td></fc<> | ormula> <inf>&lt;</inf> |
| 164 | Kinetic behavior of WO 3 -doped Nb 2 O 5 electrochromic thin films. , 2003, 4986, 666.                                                                                                                                                                                                          |                                                            | 1                       |
| 165 | Thermodynamics and Lithium Intercalation in CeO <sub>2</sub> -TiO <sub>2</sub> Thin Film. Molecular<br>Crystals and Liquid Crystals, 2010, 521, 112-119.                                                                                                                                        | 0.4                                                        | 1                       |
| 166 | Digital colour management system for colour parameters reconstruction. Proceedings of SPIE, 2013, ,                                                                                                                                                                                             | 0.8                                                        | 1                       |
| 167 | Eco-Friendly Luminescent Hybrid Materials Based on Eullland LilCo-Doped Chitosan. Journal of the<br>Brazilian Chemical Society, 2015, , .                                                                                                                                                       | 0.6                                                        | 1                       |
| 168 | Bio-inspired materials for electrochemical devices. , 2015, , .                                                                                                                                                                                                                                 |                                                            | 1                       |
| 169 | 3D printing of natural organic materials by photochemistry. Proceedings of SPIE, 2016, , .                                                                                                                                                                                                      | 0.8                                                        | 1                       |
| 170 | A study on properties of chitosan-PEO electrolyte containing europium salt. Molecular Crystals and<br>Liquid Crystals, 2017, 655, 79-86.                                                                                                                                                        | 0.4                                                        | 1                       |
| 171 | A Diffusional Study of Electrochromical Effect and Electrointercalation of Li+ Ions in WO3 Thin Films. Journal of Electronic Materials, 2021, 50, 1207-1220.                                                                                                                                    | 1.0                                                        | 1                       |
| 172 | Cellulose derivatives as solid electrolyte matrixes. , 2001, 175, 45.                                                                                                                                                                                                                           |                                                            | 1                       |
| 173 | Synthesis and electrical conductivity study of poly(3-alkyl-thiopenes). Synthetic Metals, 1991, 41, 494.                                                                                                                                                                                        | 2.1                                                        | 0                       |
| 174 | Langmuir-Blodgett films from conjugated polymers. , 0, , .                                                                                                                                                                                                                                      |                                                            | 0                       |
| 175 | Two-phase separation observed in thermally treated pellets of ClO4â <sup>~,</sup> doped poly(3-methylthiophene) from electron spin resonance measurements. Solid State Communications, 1996, 98, 267-271.                                                                                       | 0.9                                                        | 0                       |
| 176 | Solid Polymeric Electrolytes Based on Poly(vinylpyrrolidone-co-methacrylic acid) Blends. Molecular<br>Crystals and Liquid Crystals, 2006, 447, 115/[433]-122/[440].                                                                                                                             | 0.4                                                        | 0                       |
| 177 | Carbon nanotubesâ€polymer nanocomposites for controlled heating materials. Journal of Applied<br>Polymer Science, 2016, 133, .                                                                                                                                                                  | 1.3                                                        | 0                       |
| 178 | DNA-DODA-based polymer electrolytes for dye sensitized solar cells. Molecular Crystals and Liquid<br>Crystals, 2017, 655, 131-141.                                                                                                                                                              | 0.4                                                        | 0                       |
| 179 | Torrefaction effects on <i>Pinus taeda</i> L. pellets: gravimetric yield, equilibrium moisture content,<br>and high heating value. Molecular Crystals and Liquid Crystals, 2019, 693, 7-17.                                                                                                     | 0.4                                                        | 0                       |
| 180 | Fitted higher heating value from proximate analysis of torrefied pellets of Pinus taeda L Molecular<br>Crystals and Liquid Crystals, 2019, 693, 18-29.                                                                                                                                          | 0.4                                                        | 0                       |

| #   | Article                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | QuÃmicos brasileiros esquecidos Adelino Leal: um professor que ensinava no laboratório. Quimica<br>Nova, 2000, 23, 571-574.                              | 0.3 | 0         |
| 182 | Ion-conducting membranes based on gelatin and DNA. SPIE Newsroom, 2009, , .                                                                              | 0.1 | 0         |
| 183 | Erythrocytes and Relative Bioobjects Aligning in Modified Liquid Crystal Cells. Zhidkie Kristally I Ikh<br>Prakticheskoe Ispol'zovanie, 2017, 17, 74-82. | 0.0 | 0         |