Sven Bogdan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6584512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The WAVE Regulatory Complex Links Diverse Receptors to the Actin Cytoskeleton. Cell, 2014, 156, 195-207.	13.5	260
2	Actin assembly mechanisms at a glance. Journal of Cell Science, 2017, 130, 3427-3435.	1.2	229
3	Drosophila Cip4 and WASp Define a Branch of the Cdc42-Par6-aPKC Pathway Regulating E-Cadherin Endocytosis. Current Biology, 2008, 18, 1639-1648.	1.8	215
4	Drosophila Cip4/Toca-1 Integrates Membrane Trafficking and Actin Dynamics through WASP and SCAR/WAVE. Current Biology, 2009, 19, 1429-1437.	1.8	132
5	Ena/VASP Proteins Cooperate with the WAVE Complex to Regulate the Actin Cytoskeleton. Developmental Cell, 2014, 30, 569-584.	3.1	101
6	Adherens Junctions on the Move—Membrane Trafficking of E-Cadherin. Cold Spring Harbor Perspectives in Biology, 2017, 9, a029140.	2.3	89
7	The Wiskott–Aldrich syndrome protein (WASP) is essential for myoblast fusion in Drosophila. Developmental Biology, 2007, 304, 664-674.	0.9	84
8	Kette regulates actin dynamics and genetically interacts with Wave and Wasp. Development (Cambridge), 2003, 130, 4427-4437.	1.2	83
9	Abi activates WASP to promote sensory organ development. Nature Cell Biology, 2005, 7, 977-984.	4.6	64
10	Fat2 acts through the WAVE regulatory complex to drive collective cell migration during tissue rotation. Journal of Cell Biology, 2016, 212, 591-603.	2.3	54
11	Sra-1 interacts with Kette and Wasp and is required for neuronal and bristle development in Drosophila. Development (Cambridge), 2004, 131, 3981-3989.	1.2	48
12	WAVE Forms Hetero- and Homo-oligomeric Complexes at Integrin Junctions in Drosophila Visualized by Bimolecular Fluorescence Complementation. Journal of Biological Chemistry, 2010, 285, 40171-40179.	1.6	47
13	The F-BAR protein Cip4/Toca-1 antagonizes the formin Diaphanous in membrane stabilization and compartmentalization. Journal of Cell Science, 2013, 126, 1796-805.	1.2	47
14	Syndapin Promotes Formation of a Postsynaptic Membrane System in <i>Drosophila</i> . Molecular Biology of the Cell, 2009, 20, 2254-2264.	0.9	43
15	The <i>Drosophila</i> FHOD1-like formin Knittrig acts through Rok to promote stress fiber formation and directed macrophage migration during the cellular immune response. Development (Cambridge), 2014, 141, 1366-1380.	1.2	39
16	Formin' cellular structures. Communicative and Integrative Biology, 2013, 6, e27634.	0.6	36
17	Dock mediates Scar- and WASp-dependent actin polymerization through interaction with cell adhesion molecules in founder cells and fusion-competent myoblasts. Journal of Cell Science, 2013, 126, 360-372.	1.2	35
18	Transient localization of the Arp2/3 complex initiates neuronal dendrite branching <i>in vivo</i> . Development (Cambridge), 2019, 146, .	1.2	35

Sven Bogdan

#	Article	IF	CITATIONS
19	<i>Drosophila</i> WASH is required for integrin-mediated cell adhesion, cell motility and lysosomal neutralization. Journal of Cell Science, 2017, 130, 344-359.	1.2	33
20	Filopodia-based contact stimulation of cell migration drives tissue morphogenesis. Nature Communications, 2021, 12, 791.	5.8	28
21	Drosophila pupal macrophages – A versatile tool for combined ex vivo and in vivo imaging of actin dynamics at high resolution. European Journal of Cell Biology, 2013, 92, 349-354.	1.6	27
22	Membrane-targeted WAVE mediates photoreceptor axon targeting in the absence of the WAVE complex in <i>Drosophila</i> . Molecular Biology of the Cell, 2011, 22, 4079-4092.	0.9	26
23	Cooperative functions of the two F-BAR proteins Cip4 and Nostrin in regulating E-cadherin in epithelial morphogenesis. Journal of Cell Science, 2014, 128, 499-515.	1.2	21
24	The F-BAR protein family. Communicative and Integrative Biology, 2010, 3, 89-94.	0.6	18
25	FHOD proteins in actin dynamics—a formin' class of its own. Small GTPases, 2014, 5, e973765.	0.7	12
26	WHAMY is a novel actin polymerase promoting myoblast fusion, macrophage cell motility and sensory organ development. Journal of Cell Science, 2016, 129, 604-20.	1.2	11
27	Collective cell migration driven by filopodia—New insights from the social behavior of myotubes. BioEssays, 2021, 43, e2100124.	1.2	8
28	Calcium bursts allow rapid reorganization of EFhD2/Swip-1 cross-linked actin networks in epithelial wound closure. Nature Communications, 2022, 13, 2492.	5.8	8
29	Abi induces ectopic sensory organ formation by stimulating EGFR signaling. Mechanisms of Development, 2008, 125, 183-195.	1.7	7
30	Molecular Control of Actin Dynamics In Vivo: Insights from Drosophila. Handbook of Experimental Pharmacology, 2016, 235, 285-310.	0.9	7
31	CK1α protects WAVE from degradation to regulate cell shape and motility in the immune response. Journal of Cell Science, 2021, 134, .	1.2	6
32	Analysis of Cell Shape and Cell Migration of Drosophila Macrophages In Vivo. Methods in Molecular Biology, 2018, 1749, 227-238.	0.4	5
33	Multi-class Cell Segmentation Using CNNs with F \$\$_1\$\$ -measure Loss Function. Lecture Notes in Computer Science, 2019, , 434-446.	1.0	0