
## Marios C Kyriacou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6584494/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae,<br>2015, 196, 91-108.                                                                                                                        | 1.7 | 483       |
| 2  | Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 2015, 196, 28-38.                                                                                                                                               | 1.7 | 455       |
| 3  | Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae, 2010, 127, 162-171.                                                                    | 1.7 | 417       |
| 4  | Editorial: Biostimulants in Agriculture. Frontiers in Plant Science, 2020, 11, 40.                                                                                                                                                             | 1.7 | 404       |
| 5  | Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Frontiers in Plant Science, 2017, 8, 2202.                                                                                           | 1.7 | 367       |
| 6  | Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis.<br>Frontiers in Plant Science, 2014, 5, 448.                                                                                                 | 1.7 | 323       |
| 7  | The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Scientia Horticulturae, 2015, 182, 124-133.                                                                   | 1.7 | 310       |
| 8  | Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 2018, 9, 1655.                                                                                | 1.7 | 298       |
| 9  | Impact of grafting on product quality of fruit vegetables. Scientia Horticulturae, 2010, 127, 172-179.                                                                                                                                         | 1.7 | 290       |
| 10 | Micro-scale vegetable production and the rise of microgreens. Trends in Food Science and Technology, 2016, 57, 103-115.                                                                                                                        | 7.8 | 263       |
| 11 | Towards a new definition of quality for fresh fruits and vegetables. Scientia Horticulturae, 2018, 234, 463-469.                                                                                                                               | 1.7 | 241       |
| 12 | Improving vegetable quality in controlled environments. Scientia Horticulturae, 2018, 234, 275-289.                                                                                                                                            | 1.7 | 233       |
| 13 | Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 2010, 127,<br>147-155.                                                                                                                              | 1.7 | 231       |
| 14 | Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of<br>growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars.<br>Scientia Horticulturae, 2017, 226, 353-360. | 1.7 | 226       |
| 15 | Trichoderma-Based Biostimulants Modulate Rhizosphere Microbial Populations and Improve N Uptake<br>Efficiency, Yield, and Nutritional Quality of Leafy Vegetables. Frontiers in Plant Science, 2018, 9, 743.                                   | 1.7 | 224       |
| 16 | Synergistic Action of a Microbial-based Biostimulant and a Plant Derived-Protein Hydrolysate<br>Enhances Lettuce Tolerance to Alkalinity and Salinity. Frontiers in Plant Science, 2017, 08, 131.                                              | 1.7 | 213       |
| 17 | Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia<br>Horticulturae, 2010, 127, 156-161.                                                                                                                | 1.7 | 212       |
| 18 | Nitrate in fruits and vegetables. Scientia Horticulturae, 2018, 237, 221-238.                                                                                                                                                                  | 1.7 | 199       |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | High-Throughput Plant Phenotyping for Developing Novel Biostimulants: From Lab to Field or From<br>Field to Lab?. Frontiers in Plant Science, 2018, 9, 1197.                                                                                                  | 1.7 | 193       |
| 20 | Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop<br>Performance. Frontiers in Plant Science, 2018, 9, 1782.                                                                                                       | 1.7 | 184       |
| 21 | Yield, Mineral Composition, Water Relations, and Water Use Efficiency of Grafted Mini-watermelon<br>Plants Under Deficit Irrigation. Hortscience: A Publication of the American Society for Hortcultural<br>Science, 2008, 43, 730-736.                       | 0.5 | 183       |
| 22 | Foliar Applications of Protein Hydrolysate, Plant and Seaweed Extracts Increase Yield but<br>Differentially Modulate Fruit Quality of Greenhouse Tomato. Hortscience: A Publication of the<br>American Society for Hortcultural Science, 2017, 52, 1214-1220. | 0.5 | 175       |
| 23 | Vegetable Grafting: The Implications of a Growing Agronomic Imperative for Vegetable Fruit Quality and Nutritive Value. Frontiers in Plant Science, 2017, 8, 741.                                                                                             | 1.7 | 172       |
| 24 | Plant- and Seaweed-Based Extracts Increase Yield but Differentially Modulate Nutritional Quality of<br>Greenhouse Spinach through Biostimulant Action. Agronomy, 2018, 8, 126.                                                                                | 1.3 | 160       |
| 25 | Nutrient solution concentration and growing season affect yield and quality of <i>Lactuca sativa</i> L. var. <i>acephala</i> in floating raft culture. Journal of the Science of Food and Agriculture, 2009, 89, 1682-1689.                                   | 1.7 | 154       |
| 26 | Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange, and leaf<br>anatomy of zucchini squash grown under saline conditions. Journal of Applied Phycology, 2017, 29,<br>459-470.                                              | 1.5 | 153       |
| 27 | Changes in Antioxidant Content of Tomato Fruits in Response to Cultivar and Nutrient Solution Composition. Journal of Agricultural and Food Chemistry, 2006, 54, 4319-4325.                                                                                   | 2.4 | 146       |
| 28 | Vegetable Grafting as a Tool to Improve Drought Resistance and Water Use Efficiency. Frontiers in Plant Science, 2017, 8, 1130.                                                                                                                               | 1.7 | 143       |
| 29 | Fruit quality of miniâ€watermelon as affected by grafting and irrigation regimes. Journal of the Science of Food and Agriculture, 2008, 88, 1107-1114.                                                                                                        | 1.7 | 127       |
| 30 | Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chemistry, 2019, 277, 107-118.                                                                             | 4.2 | 120       |
| 31 | Improving Nitrogen Use Efficiency in Melon by Grafting. Hortscience: A Publication of the American<br>Society for Hortcultural Science, 2010, 45, 559-565.                                                                                                    | 0.5 | 114       |
| 32 | Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato.<br>Frontiers in Plant Science, 2015, 6, 477.                                                                                                               | 1.7 | 112       |
| 33 | Effects of saline stress on mineral composition, phenolic acids and flavonoids in leaves of artichoke<br>and cardoon genotypes grown in floating system. Journal of the Science of Food and Agriculture,<br>2013, 93, 1119-1127.                              | 1.7 | 110       |
| 34 | Effect of nitrogen form and nutrient solution pH on growth and mineral composition of self-grafted and grafted tomatoes. Scientia Horticulturae, 2013, 149, 61-69.                                                                                            | 1.7 | 108       |
| 35 | Protein Hydrolysate Stimulates Growth in Tomato Coupled With N-Dependent Gene Expression<br>Involved in N Assimilation. Frontiers in Plant Science, 2018, 9, 1233.                                                                                            | 1.7 | 108       |
| 36 | Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Scientia<br>Horticulturae, 2012, 135, 177-185.                                                                                                                        | 1.7 | 102       |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Vegetal Biopolymer-Based Biostimulant Promoted Root Growth in Melon While Triggering<br>Brassinosteroids and Stress-Related Compounds. Frontiers in Plant Science, 2018, 9, 472.                                                             | 1.7 | 102       |
| 38 | Growth, yield, fruit quality and nutrient uptake of hydroponically cultivated zucchini squash as affected by irrigation systems and growing seasons. Scientia Horticulturae, 2005, 105, 177-195.                                               | 1.7 | 100       |
| 39 | Understanding the Biostimulant Action of Vegetal-Derived Protein Hydrolysates by High-Throughput<br>Plant Phenotyping and Metabolomics: A Case Study on Tomato. Frontiers in Plant Science, 2019, 10, 47.                                      | 1.7 | 100       |
| 40 | Toward a Sustainable Agriculture Through Plant Biostimulants: From Experimental Data to Practical<br>Applications. Agronomy, 2020, 10, 1461.                                                                                                   | 1.3 | 99        |
| 41 | The effectiveness of grafting to improve alkalinity tolerance in watermelon. Environmental and Experimental Botany, 2010, 68, 283-291.                                                                                                         | 2.0 | 98        |
| 42 | Vegetable Grafting: A Toolbox for Securing Yield Stability under Multiple Stress Conditions. Frontiers in Plant Science, 2017, 8, 2255.                                                                                                        | 1.7 | 96        |
| 43 | A Combined Phenotypic and Metabolomic Approach for Elucidating the Biostimulant Action of a<br>Plant-Derived Protein Hydrolysate on Tomato Grown Under Limited Water Availability. Frontiers in<br>Plant Science, 2019, 10, 493.               | 1.7 | 96        |
| 44 | Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chemistry, 2014, 165, 282-289.                                                                                       | 4.2 | 94        |
| 45 | Phenolic composition, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. Food Chemistry, 2017, 234, 10-19.                                             | 4.2 | 94        |
| 46 | Morphological and Physiological Responses Induced by Protein Hydrolysate-Based Biostimulant and<br>Nitrogen Rates in Greenhouse Spinach. Agronomy, 2019, 9, 450.                                                                               | 1.3 | 93        |
| 47 | Salinity as eustressor for enhancing quality of vegetables. Scientia Horticulturae, 2018, 234, 361-369.                                                                                                                                        | 1.7 | 92        |
| 48 | Enhancing Quality of Fresh Vegetables Through Salinity Eustress and Biofortification Applications Facilitated by Soilless Cultivation. Frontiers in Plant Science, 2018, 9, 1254.                                                              | 1.7 | 91        |
| 49 | The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber. Scientia<br>Horticulturae, 2013, 164, 380-391.                                                                                                                  | 1.7 | 90        |
| 50 | Plant-Based Biostimulants Influence the Agronomical, Physiological, and Qualitative Responses of<br>Baby Rocket Leaves under Diverse Nitrogen Conditions. Plants, 2019, 8, 522.                                                                | 1.6 | 89        |
| 51 | Watermelon and melon fruit quality: The genotypic and agro-environmental factors implicated.<br>Scientia Horticulturae, 2018, 234, 393-408.                                                                                                    | 1.7 | 87        |
| 52 | Evaluation of Rootstock Resistance to Fusarium Wilt and Gummy Stem Blight and Effect on Yield and<br>Quality of a Grafted †Inodorus' Melon. Hortscience: A Publication of the American Society for<br>Hortcultural Science, 2007, 42, 521-525. | 0.5 | 87        |
| 53 | Microgreens as a Component of Space Life Support Systems: A Cornucopia of Functional Food.<br>Frontiers in Plant Science, 2017, 8, 1587.                                                                                                       | 1.7 | 83        |
| 54 | Zinc Excess Triggered Polyamines Accumulation in Lettuce Root Metabolome, As Compared to Osmotic<br>Stress under High Salinity. Frontiers in Plant Science, 2016, 7, 842.                                                                      | 1.7 | 81        |

| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Nitrogenâ€use efficiency traits of miniâ€watermelon in response to grafting and nitrogenâ€fertilization<br>doses. Journal of Plant Nutrition and Soil Science, 2011, 174, 933-941.                                                                                        | 1.1 | 80        |
| 56 | Foliar Application of Vegetal-Derived Bioactive Compounds Stimulates the Growth of Beneficial<br>Bacteria and Enhances Microbiome Biodiversity in Lettuce. Frontiers in Plant Science, 2019, 10, 60.                                                                      | 1.7 | 80        |
| 57 | Mild Potassium Chloride Stress Alters the Mineral Composition, Hormone Network, and Phenolic Profile in Artichoke Leaves. Frontiers in Plant Science, 2016, 7, 948.                                                                                                       | 1.7 | 79        |
| 58 | Effect of Vegetal- and Seaweed Extract-Based Biostimulants on Agronomical and Leaf Quality Traits of<br>Plastic Tunnel-Grown Baby Lettuce under Four Regimes of Nitrogen Fertilization. Agronomy, 2019, 9,<br>571.                                                        | 1.3 | 70        |
| 59 | Biostimulant Application with a Tropical Plant Extract Enhances Corchorus olitorius Adaptation to Sub-Optimal Nutrient Regimens by Improving Physiological Parameters. Agronomy, 2019, 9, 249.                                                                            | 1.3 | 70        |
| 60 | Nitrogen Use and Uptake Efficiency and Crop Performance of Baby Spinach (Spinacia oleracea L.) and<br>Lamb's Lettuce (Valerianella locusta L.) Grown under Variable Sub-Optimal N Regimes Combined with<br>Plant-Based Biostimulant Application. Agronomy, 2020, 10, 278. | 1.3 | 70        |
| 61 | Physiological and Metabolic Responses Triggered by Omeprazole Improve Tomato Plant Tolerance to<br>NaCl Stress. Frontiers in Plant Science, 2018, 9, 249.                                                                                                                 | 1.7 | 67        |
| 62 | Protein Hydrolysate or Plant Extract-based Biostimulants Enhanced Yield and Quality Performances of Greenhouse Perennial Wall Rocket Grown in Different Seasons. Plants, 2019, 8, 208.                                                                                    | 1.6 | 67        |
| 63 | Selenium Biofortification Impacts the Nutritive Value, Polyphenolic Content, and Bioactive Constitution of Variable Microgreens Genotypes. Antioxidants, 2020, 9, 272.                                                                                                    | 2.2 | 67        |
| 64 | Changes in Biomass, Mineral Composition, and Quality of Cardoon in Response to NO3-:Cl- Ratio and Nitrate Deprivation from the Nutrient Solution. Frontiers in Plant Science, 2016, 7, 978.                                                                               | 1.7 | 65        |
| 65 | Grafting Tomato as a Tool to Improve Salt Tolerance. Agronomy, 2020, 10, 263.                                                                                                                                                                                             | 1.3 | 63        |
| 66 | Phenolic Compounds and Sesquiterpene Lactones Profile in Leaves of Nineteen Artichoke Cultivars.<br>Journal of Agricultural and Food Chemistry, 2016, 64, 8540-8548.                                                                                                      | 2.4 | 61        |
| 67 | The influence of irrigation system and nutrient solution concentration on potted geranium production under various conditions of radiation and temperature. Scientia Horticulturae, 2008, 118, 328-337.                                                                   | 1.7 | 59        |
| 68 | Configuration of watermelon fruit quality inÂresponse to rootstockâ€mediated harvest maturity and postharvest storage. Journal of the Science of Food and Agriculture, 2016, 96, 2400-2409.                                                                               | 1.7 | 59        |
| 69 | Role of arbuscular mycorrhizal fungi in alleviating the adverse effects of acidity and aluminium toxicity in zucchini squash. Scientia Horticulturae, 2015, 188, 97-105.                                                                                                  | 1.7 | 58        |
| 70 | Genotype-Specific Modulatory Effects of Select Spectral Bandwidths on the Nutritive and Phytochemical Composition of Microgreens. Frontiers in Plant Science, 2019, 10, 1501.                                                                                             | 1.7 | 58        |
| 71 | Appraisal of Combined Applications of Trichoderma virens and a Biopolymer-Based Biostimulant on<br>Lettuce Agronomical, Physiological, and Qualitative Properties under Variable N Regimes. Agronomy,<br>2020, 10, 196.                                                   | 1.3 | 56        |
| 72 | Enhancement of alkalinity tolerance in two cucumber genotypes inoculated with an arbuscular<br>mycorrhizal biofertilizer containing Glomus intraradices. Biology and Fertility of Soils, 2010, 46,<br>499-509.                                                            | 2.3 | 55        |

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Macronutrient deprivation eustress elicits differential secondary metabolites in red and<br>greenâ€pigmented butterhead lettuce grown in a closed soilless system. Journal of the Science of Food<br>and Agriculture, 2019, 99, 6962-6972.                            | 1.7 | 54        |
| 74 | Metabolomic Responses of Maize Shoots and Roots Elicited by Combinatorial Seed Treatments With Microbial and Non-microbial Biostimulants. Frontiers in Microbiology, 2020, 11, 664.                                                                                   | 1.5 | 54        |
| 75 | Salinity sourceâ€induced changes in yield, mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon grown in floating system. Journal of the Science of Food and Agriculture, 2014, 94, 1231-1237.                                       | 1.7 | 53        |
| 76 | Microalgae: New Source of Plant Biostimulants. Agronomy, 2020, 10, 1240.                                                                                                                                                                                              | 1.3 | 53        |
| 77 | Phenolic Constitution, Phytochemical and Macronutrient Content in Three Species of Microgreens as<br>Modulated by Natural Fiber and Synthetic Substrates. Antioxidants, 2020, 9, 252.                                                                                 | 2.2 | 53        |
| 78 | Yield and Nutritional Quality of Vesuvian Piennolo Tomato PDO as Affected by Farming System and Biostimulant Application. Agronomy, 2019, 9, 505.                                                                                                                     | 1.3 | 52        |
| 79 | Effect of nickel and grafting combination on yield, fruit quality, antioxidative enzyme activities, lipid<br>peroxidation, and mineral composition of tomato. Journal of Plant Nutrition and Soil Science, 2015,<br>178, 848-860.                                     | 1.1 | 49        |
| 80 | Profile of bioactive secondary metabolites and antioxidant capacity of leaf exudates from eighteen<br>Aloe species. Industrial Crops and Products, 2017, 108, 44-51.                                                                                                  | 2.5 | 49        |
| 81 | Grown to Be Blue—Antioxidant Properties and Health Effects of Colored Vegetables. Part II: Leafy,<br>Fruit, and Other Vegetables. Antioxidants, 2020, 9, 97.                                                                                                          | 2.2 | 49        |
| 82 | Nutrient Solution Concentration Affects Growth, Mineral Composition, Phenolic Acids, and<br>Flavonoids in Leaves of Artichoke and Cardoon. Hortscience: A Publication of the American Society<br>for Hortcultural Science, 2012, 47, 1424-1429.                       | 0.5 | 49        |
| 83 | Sensory and functional quality characterization of protected designation of origin â€~Piennolo del<br>Vesuvio' cherry tomato landraces from Campania-Italy. Food Chemistry, 2019, 292, 166-175.                                                                       | 4.2 | 48        |
| 84 | Variation in Macronutrient Content, Phytochemical Constitution and In Vitro Antioxidant Capacity of<br>Green and Red Butterhead Lettuce Dictated by Different Developmental Stages of Harvest Maturity.<br>Antioxidants, 2020, 9, 300.                                | 2.2 | 48        |
| 85 | Effects of vegetal- versus animal-derived protein hydrolysate on sweet basil morpho-physiological and metabolic traits. Scientia Horticulturae, 2021, 284, 110123.                                                                                                    | 1.7 | 42        |
| 86 | Combating Micronutrient Deficiency and Enhancing Food Functional Quality Through Selenium<br>Fortification of Select Lettuce Genotypes Grown in a Closed Soilless System. Frontiers in Plant<br>Science, 2019, 10, 1495.                                              | 1.7 | 41        |
| 87 | Iron Biofortification of Red and Green Pigmented Lettuce in Closed Soilless Cultivation Impacts Crop<br>Performance and Modulates Mineral and Bioactive Composition. Agronomy, 2019, 9, 290.                                                                          | 1.3 | 41        |
| 88 | Appraisal of emerging crop management opportunities in fruit trees, grapevines and berry crops facilitated by the application of biostimulants. Scientia Horticulturae, 2020, 267, 109330.                                                                            | 1.7 | 41        |
| 89 | Genotype and Successive Harvests Interaction Affects Phenolic Acids and Aroma Profile of Genovese<br>Basil for Pesto Sauce Production. Foods, 2021, 10, 278.                                                                                                          | 1.9 | 41        |
| 90 | The Influence of Drip Irrigation or Subirrigation on Zucchini Squash Grown in Closed-loop Substrate<br>Culture with High and Low Nutrient Solution Concentrations. Hortscience: A Publication of the<br>American Society for Hortcultural Science, 2009, 44, 306-311. | 0.5 | 41        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Sensory Attributes and Consumer Acceptability of 12 Microgreens Species. Agronomy, 2020, 10, 1043.                                                                                                                       | 1.3 | 40        |
| 92  | Foliar Application of Different Vegetal-Derived Protein Hydrolysates Distinctively Modulates Tomato<br>Root Development and Metabolism. Plants, 2021, 10, 326.                                                           | 1.6 | 39        |
| 93  | Chemical Eustress Elicits Tailored Responses and Enhances the Functional Quality of Novel Food<br>Perilla frutescens. Molecules, 2019, 24, 185.                                                                          | 1.7 | 37        |
| 94  | Uptake and bioaccumulation of three widely prescribed pharmaceutically active compounds in tomato<br>fruits and mediated effects on fruit quality attributes. Science of the Total Environment, 2019, 647,<br>1169-1178. | 3.9 | 36        |
| 95  | The bioactive profile of lettuce produced in a closed soilless system as configured by combinatorial effects of genotype and macrocation supply composition. Food Chemistry, 2020, 309, 125713.                          | 4.2 | 35        |
| 96  | Can Adverse Effects of Acidity and Aluminum Toxicity Be Alleviated by Appropriate Rootstock Selection in Cucumber?. Frontiers in Plant Science, 2016, 7, 1283.                                                           | 1.7 | 34        |
| 97  | Rootstock-modulated yield performance, fruit maturation and phytochemical quality of â€ <sup>-</sup> Lane Late'<br>and â€ <sup>-</sup> Delta' sweet orange. Scientia Horticulturae, 2017, 225, 112-121.                  | 1.7 | 34        |
| 98  | Grown to be Blue—Antioxidant Properties and Health Effects of Colored Vegetables. Part I: Root<br>Vegetables. Antioxidants, 2019, 8, 617.                                                                                | 2.2 | 34        |
| 99  | Quality and Postharvest Performance of Watermelon Fruit in Response to Grafting on Interspecific<br>Cucurbit Rootstocks. Journal of Food Quality, 2015, 38, 21-29.                                                       | 1.4 | 33        |
| 100 | The occurrence of nitrate and nitrite in Mediterranean fresh salad vegetables and its modulation by preharvest practices and postharvest conditions. Food Chemistry, 2019, 285, 468-477.                                 | 4.2 | 33        |
| 101 | Appraisal of Biodegradable Mulching Films and Vegetal-Derived Biostimulant Application as<br>Eco-Sustainable Practices for Enhancing Lettuce Crop Performance and Nutritive Value. Agronomy,<br>2020, 10, 427.           | 1.3 | 33        |
| 102 | Combining Molecular Weight Fractionation and Metabolomics to Elucidate the Bioactivity of Vegetal<br>Protein Hydrolysates in Tomato Plants. Frontiers in Plant Science, 2020, 11, 976.                                   | 1.7 | 32        |
| 103 | Physiological and Nutraceutical Quality of Green and Red Pigmented Lettuce in Response to NaCl<br>Concentration in Two Successive Harvests. Agronomy, 2020, 10, 1358.                                                    | 1.3 | 31        |
| 104 | Metabolic Insights into the Anion-Anion Antagonism in Sweet Basil: Effects of Different<br>Nitrate/Chloride Ratios in the Nutrient Solution. International Journal of Molecular Sciences, 2020,<br>21, 2482.             | 1.8 | 31        |
| 105 | Stand-Alone and Combinatorial Effects of Plant-based Biostimulants on the Production and Leaf<br>Quality of Perennial Wall Rocket. Plants, 2020, 9, 922.                                                                 | 1.6 | 30        |
| 106 | Nutrient Supplementation Configures the Bioactive Profile and Production Characteristics of Three Brassica L. Microgreens Species Grown in Peat-Based Media. Agronomy, 2021, 11, 346.                                    | 1.3 | 30        |
| 107 | Successive Harvests Affect Yield, Quality and Metabolic Profile of Sweet Basil (Ocimum basilicum L.).<br>Agronomy, 2020, 10, 830.                                                                                        | 1.3 | 29        |
| 108 | Foliar and Root Applications of Vegetal-Derived Protein Hydrolysates Differentially Enhance the Yield<br>and Qualitative Attributes of Two Lettuce Cultivars Grown in Floating System. Agronomy, 2021, 11,<br>1194.      | 1.3 | 27        |

| #   | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Evolution of Nutritional Value of Two Tomato Genotypes Grown in Soilless Culture as Affected by<br>Macrocation Proportions. Hortscience: A Publication of the American Society for Hortcultural<br>Science, 2006, 41, 1584-1588.                               | 0.5 | 27        |
| 110 | GENOTYPIC VARIATION IN NUTRITIONAL AND ANTIOXIDANT PROFILE AMONG ICEBERG LETTUCE CULTIVARS.<br>Acta Scientiarum Polonorum, Hortorum Cultus, 2017, 16, 37-45.                                                                                                   | 0.3 | 27        |
| 111 | Mitigation of alkaline stress by arbuscular mycorrhiza in zucchini plants grown under mineral and organic fertilization. Journal of Plant Nutrition and Soil Science, 2010, 173, 778-787.                                                                      | 1.1 | 26        |
| 112 | Biostimulatory Action of Arbuscular Mycorrhizal Fungi Enhances Productivity, Functional and<br>Sensory Quality in â€~Piennolo del Vesuvio' Cherry Tomato Landraces. Agronomy, 2020, 10, 911.                                                                   | 1.3 | 26        |
| 113 | Biochemical and histological contributions to textural changes in watermelon fruit modulated by grafting. Food Chemistry, 2017, 237, 133-140.                                                                                                                  | 4.2 | 25        |
| 114 | Mapping the Primary and Secondary Metabolomes of Carob (Ceratonia siliqua L.) Fruit and Its<br>Postharvest Antioxidant Potential at Critical Stages of Ripening. Antioxidants, 2021, 10, 57.                                                                   | 2.2 | 25        |
| 115 | Rootstock-Mediated Effects on Watermelon Field Performance and Fruit Quality Characteristics.<br>International Journal of Vegetable Science, 2015, 21, 344-362.                                                                                                | 0.6 | 24        |
| 116 | Morpho-physiological and homeostatic adaptive responses triggered by omeprazole enhance lettuce to salt stress. Scientia Horticulturae, 2019, 249, 22-30.                                                                                                      | 1.7 | 23        |
| 117 | Biostimulants as a Tool for Improving Environmental Sustainability of Greenhouse Vegetable Crops.<br>Sustainability, 2020, 12, 5101.                                                                                                                           | 1.6 | 21        |
| 118 | Reducing Energy Requirements in Future Bioregenerative Life Support Systems (BLSSs): Performance<br>and Bioactive Composition of Diverse Lettuce Genotypes Grown Under Optimal and Suboptimal Light<br>Conditions. Frontiers in Plant Science, 2019, 10, 1305. | 1.7 | 20        |
| 119 | Sweet Basil Functional Quality as Shaped by Genotype and Macronutrient Concentration Reciprocal Action. Plants, 2020, 9, 1786.                                                                                                                                 | 1.6 | 19        |
| 120 | Productive and Morphometric Traits, Mineral Composition and Secondary Metabolome Components of Borage and Purslane as Underutilized Species for Microgreens Production. Horticulturae, 2021, 7, 211.                                                           | 1.2 | 19        |
| 121 | Indexing melon physiological decline to fruit quality and vine morphometric parameters. Scientia<br>Horticulturae, 2016, 203, 207-215.                                                                                                                         | 1.7 | 18        |
| 122 | Nutritional stress suppresses nitrate content and positively impacts ascorbic acid concentration and phenolic acids profile of lettuce microgreens. Italus Hortus, 2020, 27, 41-52.                                                                            | 0.5 | 18        |
| 123 | Plant-Derived Biostimulants Differentially Modulate Primary and Secondary Metabolites and Improve the Yield Potential of Red and Green Lettuce Cultivars. Agronomy, 2022, 12, 1361.                                                                            | 1.3 | 18        |
| 124 | Evolution of physicochemical constitution and cultivar-differential maturity configuration in olive (Olea europaea L.) fruit. Scientia Horticulturae, 2020, 272, 109516.                                                                                       | 1.7 | 17        |
| 125 | Preharvest Nutrient Deprivation Reconfigures Nitrate, Mineral, and Phytochemical Content of Microgreens. Foods, 2021, 10, 1333.                                                                                                                                | 1.9 | 17        |
| 126 | Biostimulation as a Means for Optimizing Fruit Phytochemical Content and Functional Quality of<br>Tomato Landraces of the San Marzano Area. Foods, 2021, 10, 926.                                                                                              | 1.9 | 16        |

| #   | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Asynchronous ripening behavior of cactus pear (Opuntia ficus-indica) cultivars with respect to physicochemical and physiological attributes. Food Chemistry, 2016, 211, 598-607.                                                                                             | 4.2 | 15        |
| 128 | Pod Morphology, Primary and Secondary Metabolite Profiles in Non-grafted and Grafted Carob<br>Germplasm Are Configured by Agro-Environmental Zone, Genotype, and Growing Season. Frontiers in<br>Plant Science, 2020, 11, 612376.                                            | 1.7 | 15        |
| 129 | Regulated Salinity Eustress in a Floating Hydroponic Module of Sequentially Harvested Lettuce<br>Modulates Phytochemical Constitution, Plant Resilience, and Post-Harvest Nutraceutical Quality.<br>Agronomy, 2021, 11, 1040.                                                | 1.3 | 15        |
| 130 | The Effects of Nutrient Solution Feeding Regime on Yield, Mineral Profile, and Phytochemical Composition of Spinach Microgreens. Horticulturae, 2021, 7, 162.                                                                                                                | 1.2 | 15        |
| 131 | Salinity Stress Tolerance in Potato Cultivars: Evidence from Physiological and Biochemical Traits.<br>Plants, 2022, 11, 1842.                                                                                                                                                | 1.6 | 15        |
| 132 | Omeprazole Promotes Chloride Exclusion and Induces Salt Tolerance in Greenhouse Basil. Agronomy, 2019, 9, 355.                                                                                                                                                               | 1.3 | 14        |
| 133 | Mineral and Antioxidant Attributes of Petroselinum crispum at Different Stages of Ontogeny:<br>Microgreens vs. Baby Greens. Agronomy, 2021, 11, 857.                                                                                                                         | 1.3 | 14        |
| 134 | Ontogenetic Variation in the Mineral, Phytochemical and Yield Attributes of Brassicaceous<br>Microgreens. Foods, 2021, 10, 1032.                                                                                                                                             | 1.9 | 14        |
| 135 | An appraisal of critical factors configuring the composition of basil in minerals, bioactive secondary metabolites, micronutrients and volatile aromatic compounds. Journal of Food Composition and Analysis, 2022, 111, 104582.                                             | 1.9 | 14        |
| 136 | Integrated Waste Management Through Producers and Consumers Education: Composting of<br>Vegetable Crop Residues for Reuse in Cultivation. Journal of Environmental Science and Health - Part<br>B Pesticides, Food Contaminants, and Agricultural Wastes, 2004, 39, 169-183. | 0.7 | 13        |
| 137 | Effects of Plant-Derived Protein Hydrolysates on Yield, Quality, and Nitrogen Use Efficiency of<br>Greenhouse Grown Lettuce and Tomato. Agronomy, 2022, 12, 1018.                                                                                                            | 1.3 | 13        |
| 138 | Heat- and Ultrasound-Assisted Aqueous Extraction of Soluble Carbohydrates and Phenolics from Carob Kibbles of Variable Size and Source Material. Foods, 2020, 9, 1364.                                                                                                       | 1.9 | 12        |
| 139 | Foliar Application of an Amino Acid-Enriched Urea Fertilizer on â€~Greco' Grapevines at Full Veraison<br>Increases Berry Yeast-Assimilable Nitrogen Content. Plants, 2020, 9, 619.                                                                                           | 1.6 | 12        |
| 140 | Protein Hydrolysate Combined with Hydroponics Divergently Modifies Growth and Shuffles Pigments and Free Amino Acids of Carrot and Dill Microgreens. Horticulturae, 2021, 7, 279.                                                                                            | 1.2 | 12        |
| 141 | Morphological and Physio-Biochemical Responses of Watermelon Grafted onto Rootstocks of Wild<br>Watermelon [Citrullus colocynthis (L.) Schrad] and Commercial Interspecific Cucurbita Hybrid to<br>Drought Stress. Horticulturae, 2021, 7, 359.                              | 1.2 | 12        |
| 142 | Rate and Timing of Application of Biostimulant Substances to Enhance Fruit Tree Tolerance toward<br>Environmental Stresses and Fruit Quality. Agronomy, 2022, 12, 603.                                                                                                       | 1.3 | 12        |
| 143 | Sprouts, Microgreens and Edible Flowers as Novel Functional Foods. Agronomy, 2021, 11, 2568.                                                                                                                                                                                 | 1.3 | 12        |
| 144 | Differential Response to NaCl Osmotic Stress in Sequentially Harvested Hydroponic Red and Green<br>Basil and the Role of Calcium. Frontiers in Plant Science, 2022, 13, 799213.                                                                                              | 1.7 | 11        |

| #   | Article                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Effects of rind removal on physicochemical quality characteristics of freshâ€cut watermelon<br>[ <i><scp>C</scp>itrullus lanatus</i> ( <scp>T</scp> hunb) <scp>M</scp> atsum & <scp>N</scp> akai]<br>during cold storage. International Journal of Food Science and Technology, 2013, 48, 357-362. | 1.3 | 10        |
| 146 | Productive Characteristics and Fruit Quality Traits of Cherry Tomato Hybrids as Modulated by<br>Grafting on Different Solanum spp. Rootstocks under Ralstonia solanacearum Infested Greenhouse<br>Soil. Agronomy, 2021, 11, 1311.                                                                  | 1.3 | 10        |
| 147 | Impact of hot water treatment on sprouting, membrane permeability, sugar content and chip colour<br>of reconditioned potato tubers following longâ€ŧerm cold storage. Journal of the Science of Food and<br>Agriculture, 2008, 88, 2682-2687.                                                      | 1.7 | 9         |
| 148 | Physicochemical characterization and trait stability in a genetically diverse ex situ collection of pomegranate (Punica granatum L.) germplasm from Cyprus. Scientia Horticulturae, 2020, 263, 109116.                                                                                             | 1.7 | 9         |
| 149 | Augmenting the Sustainability of Vegetable Cropping Systems by Configuring Rootstock-Dependent<br>Rhizomicrobiomes that Support Plant Protection. Agronomy, 2020, 10, 1185.                                                                                                                        | 1.3 | 9         |
| 150 | Phytochemical Profile, Mineral Content, and Bioactive Compounds in Leaves of Seed-Propagated Artichoke Hybrid Cultivars. Molecules, 2020, 25, 3795.                                                                                                                                                | 1.7 | 9         |
| 151 | Successive Harvests Modulate the Productive and Physiological Behavior of Three Genovese Pesto<br>Basil Cultivars. Agronomy, 2021, 11, 560.                                                                                                                                                        | 1.3 | 9         |
| 152 | Vegetal-protein hydrolysates based microgranule enhances growth, mineral content, and quality traits of vegetable transplants. Scientia Horticulturae, 2021, 290, 110554.                                                                                                                          | 1.7 | 9         |
| 153 | Does CaCl2 Play a Role in Improving Biomass Yield and Quality of Cardoon Grown in a Floating System under Saline Conditions?. Hortscience: A Publication of the American Society for Hortcultural Science, 2014, 49, 1523-1528.                                                                    | 0.5 | 9         |
| 154 | Genotypic, storage and processing effects on compositional and bioactive components of fresh sprouts. LWT - Food Science and Technology, 2017, 85, 394-399.                                                                                                                                        | 2.5 | 8         |
| 155 | Root Zone Management for Improving Seedling Quality of Organically Produced Horticultural Crops.<br>Agronomy, 2021, 11, 630.                                                                                                                                                                       | 1.3 | 8         |
| 156 | Dataset on the organic acids, sulphate, total nitrogen and total chlorophyll contents of two lettuce cultivars grown hydroponically using nutrient solutions of variable macrocation ratios. Data in Brief, 2020, 29, 105135.                                                                      | 0.5 | 7         |
| 157 | Morpho-Metric and Specialized Metabolites Modulation of Parsley Microgreens through Selective LED Wavebands. Agronomy, 2022, 12, 1502.                                                                                                                                                             | 1.3 | 7         |
| 158 | Characterization and Identification of Indigenous Olive Germplasm from Cyprus Using Morphological<br>and Simple Sequence Repeat Markers. Hortscience: A Publication of the American Society for<br>Hortcultural Science, 2018, 53, 1306-1313.                                                      | 0.5 | 6         |
| 159 | Grafting as a Sustainable Means for Securing Yield Stability and Quality in Vegetable Crops. Agronomy, 2020, 10, 1945.                                                                                                                                                                             | 1.3 | 6         |
| 160 | Changes in the primary and secondary metabolome of male green asparagus (Asparagus officinalis L.)<br>as modulated by sequential harvesting. Food Chemistry, 2021, 358, 129877.                                                                                                                    | 4.2 | 6         |
| 161 | Macro and trace element mineral composition of six hemp varieties grown as microgreens. Journal of<br>Food Composition and Analysis, 2022, 114, 104750.                                                                                                                                            | 1.9 | 5         |
| 162 | The chipâ€processing potential of four potato ( <i>Solanum tuberosum</i> L.) cultivars in response to<br>longâ€ŧerm cold storage and reconditioning. Journal of the Science of Food and Agriculture, 2009, 89,<br>758-764.                                                                         | 1.7 | 4         |

| #   | Article                                                                                                                                                                                                                                                                                                                              | IF                | CITATIONS         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| 163 | Modulatory Effects of Interspecific and Gourd Rootstocks on Crop Performance, Physicochemical<br>Quality, Bioactive Components and Postharvest Performance of Diploid and Triploid Watermelon<br>Scions. Agronomy, 2020, 10, 1396.                                                                                                   | 1.3               | 4                 |
| 164 | Intraspecific Variability Largely Affects the Leaf Metabolomics Response to Isosmotic Macrocation Variations in Two Divergent Lettuce (Lactuca sativa L.) Varieties. Plants, 2021, 10, 91.                                                                                                                                           | 1.6               | 4                 |
| 165 | Biostimulatory Action of Vegetal Protein Hydrolysate and the Configuration of Fruit Physicochemical Characteristics in Grafted Watermelon. Horticulturae, 2021, 7, 313.                                                                                                                                                              | 1.2               | 4                 |
| 166 | Oxidative stability, fatty-acid and phenolic composition of Cypriot monovarietal virgin olive oils with progressive fruit maturity. Journal of Food Composition and Analysis, 2021, 104, 104191.                                                                                                                                     | 1.9               | 4                 |
| 167 | Activity of 5-Aminolevulinic Acid Dehydratase Declines during Tomato Fruit Development and Ripening.<br>Journal of the American Society for Horticultural Science, 1996, 121, 91-95.                                                                                                                                                 | 0.5               | 4                 |
| 168 | Phenology, Morphology and Physiology Responses of Deficit Irrigated â€~Koroneiki' Olive Trees as<br>Affected by Environmental Conditions and Alternate Bearing. Agronomy, 2022, 12, 879.                                                                                                                                             | 1.3               | 4                 |
| 169 | Configuration of the Volatile Aromatic Profile of Carob Powder Milled From Pods of Genetic<br>Variants Harvested at Progressive Stages of Ripening From High and Low Altitudes. Frontiers in<br>Nutrition, 2021, 8, 789169.                                                                                                          | 1.6               | 4                 |
| 170 | Influence of a post-harvest hot water treatment on the development of green mould [ <i>Penicillium<br/>digitatum</i> (Pers.:Fr.) Sacc.] and on the quality of â€~Mandora' fruit [ <i>Citrus<br/>reticulata</i> Blanco <i>Citrus sinensis</i> (L.) Osbeck]. Journal of Horticultural Science and<br>Biotechnology, 2011, 86, 359-365. | 0.9               | 3                 |
| 171 | 1-Methylcyclopropene Improves Postharvest Performances and Sensorial Attributes of Annurca-Type<br>Apples Exposed to the Traditional Reddening in Open-Field Melaio. Agronomy, 2021, 11, 1056.                                                                                                                                       | 1.3               | 3                 |
| 172 | Configuration by Osmotic Eustress Agents of the Morphometric Characteristics and the Polyphenolic<br>Content of Differently Pigmented Baby Lettuce Varieties in Two Successive Harvests. Horticulturae,<br>2021, 7, 264.                                                                                                             | 1.2               | 3                 |
| 173 | Application of Phenomics to Elucidate the Influence of Rootstocks on Drought Response of Tomato.<br>Agronomy, 2022, 12, 1529.                                                                                                                                                                                                        | 1.3               | 3                 |
| 174 | Cold storage, reconditioning potential and chip processing quality of spring potato ( <i>Solanum) Tj ETQq0 0 0 rg<br/>Science of Food and Agriculture, 2009, 89, 1955-1962.</i>                                                                                                                                                      | BT /Overlo<br>1.7 | ock 10 Tf 50<br>2 |
| 175 | Influence of mild saline stress and growing season on yield and leaf quality of baby lettuce grown in floating system. Acta Horticulturae, 2019, , 147-152.                                                                                                                                                                          | 0.1               | 2                 |
| 176 | ROOTSTOCK-MEDIATED EFFECTS ON WATERMELON RIPENING BEHAVIOR AND FRUIT PHYSICOCHEMICAL AND PHYTOCHEMICAL COMPOSITION. Acta Horticulturae, 2015, , 707-714.                                                                                                                                                                             | 0.1               | 1                 |
| 177 | Improving Bell Pepper Crop Performance and Fruit Quality under Suboptimal Calcium Conditions by Grafting onto Tolerant Rootstocks. Agronomy, 2022, 12, 1644.                                                                                                                                                                         | 1.3               | 1                 |
| 178 | Configuration of basil quality and aroma profile in response to cultivar, cut number and salinity source. , 2017, , .                                                                                                                                                                                                                |                   | 0                 |
| 179 | Drip application of a biopolymer-based biostimulant enhances root growth and nutrient uptake of processing tomato. , 2017, , .                                                                                                                                                                                                       |                   | 0                 |
| 180 | Artichoke transplant production: effects of nutrient solution delivery and leaf clipping. Acta<br>Horticulturae. 2019 567-574.                                                                                                                                                                                                       | 0.1               | 0                 |