Susanna F Boxall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6584100/publications.pdf

Version: 2024-02-01

1040056 1281871 11 806 9 11 citations h-index g-index papers 12 12 12 821 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Phosphorolytic degradation of leaf starch via plastidic $\hat{l}\pm$ -glucan phosphorylase leads to optimized plant growth and water use efficiency over the diel phases of Crassulacean acid metabolism. Journal of Experimental Botany, 2021, 72, 4419-4434.	4.8	8
2	C ₄ and crassulacean acid metabolism within a single leaf: deciphering key components behind a rare photosynthetic adaptation. New Phytologist, 2020, 225, 1699-1714.	7.3	26
3	Exploring C4–CAM plasticity within the Portulaca oleracea complex. Scientific Reports, 2020, 10, 14237.	3.3	18
4	Crassulacean acid metabolism guard cell anion channel activity follows transcript abundance and is suppressed by apoplastic malate. New Phytologist, 2020, 227, 1847-1857.	7.3	6
5	<i>Kalanchoë</i> PPC1 Is Essential for Crassulacean Acid Metabolism and the Regulation of Core Circadian Clock and Guard Cell Signaling Genes. Plant Cell, 2020, 32, $1136-1160$.	6.6	52
6	Phosphorylation of Phospho <i>enol</i> pyruvate Carboxylase Is Essential for Maximal and Sustained Dark CO ₂ Fixation and Core Circadian Clock Operation in the Obligate Crassulacean Acid Metabolism Species <i>Kalanchoã« fedtschenkoi</i>). Plant Cell, 2017, 29, 2519-2536.	6.6	67
7	The Kalancho $ ilde{A}$ « genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nature Communications, 2017, 8, 1899.	12.8	159
8	Emerging model systems for functional genomics analysis of Crassulacean acid metabolism. Current Opinion in Plant Biology, 2016, 31, 100-108.	7.1	51
9	A roadmap for research on crassulacean acid metabolism (<scp>CAM</scp>) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytologist, 2015, 207, 491-504.	7.3	211
10	Transgenic Perturbation of the Decarboxylation Phase of Crassulacean Acid Metabolism Alters Physiology and Metabolism But Has Only a Small Effect on Growth. Plant Physiology, 2015, 167, 44-59.	4.8	76
11	Conservation and Divergence of Circadian Clock Operation in a Stress-Inducible Crassulacean Acid Metabolism Species Reveals Clock Compensation against Stress. Plant Physiology, 2005, 137, 969-982.	4.8	132