
Zhen-Hua Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6584082/publications.pdf Version: 2024-02-01

2.7

10

#	Article	IF	CITATIONS
1	Electronic structure and magnetic properties of penta-graphene nanoribbons. Physical Chemistry Chemical Physics, 2017, 19, 9528-9536.	1.3	65
2	Gate-controlled reversible rectifying behavior investigated in a two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>MoS </mml:mi> <mml: diode. Physical Review B, 2021, 104, .</mml: </mml:msub></mml:mrow></mml:math 	:mmunanananananananananananananananananan	m&#nn></mn</td></tr><tr><td>3</td><td>O-Vacancy-line defective Ti₂CO₂ nanoribbons: novel magnetism, tunable carrier mobility, and magnetic device behaviors. Journal of Materials Chemistry C, 2019, 7, 7745-7759.</td><td>2.7</td><td>63</td></tr><tr><td>4</td><td>High-performance 5.1 nm in-plane Janus WSeTe Schottky barrier field effect transistors. Nanoscale, 2020, 12, 21750-21756.</td><td>2.8</td><td>62</td></tr><tr><td>5</td><td>Magnetic structure and magnetic transport characteristics of nanostructures based on armchair-edged graphene nanoribbons. Journal of Materials Chemistry C, 2015, 3, 9657-9663.</td><td>2.7</td><td>40</td></tr><tr><td>6</td><td>Symmetry-dependent spin transport properties of a single phenalenyl or pyrene molecular device. Carbon, 2017, 122, 687-693.</td><td>5.4</td><td>37</td></tr><tr><td>7</td><td>Half metal phase in the zigzag phosphorene nanoribbon. Scientific Reports, 2018, 8, 2932.</td><td>1.6</td><td>31</td></tr><tr><td>8</td><td>Metal doped armchair graphene nanoribbons: electronic structure, carrier mobility and device properties. Physical Chemistry Chemical Physics, 2019, 21, 1830-1840.</td><td>1.3</td><td>30</td></tr><tr><td>9</td><td>Reversible switching in gold-atom–organic-molecule complex induced by reversible bond formation. Organic Electronics, 2015, 18, 101-106.</td><td>1.4</td><td>29</td></tr><tr><td>10</td><td>Spin-dependent carrier mobility and its gate-voltage modifying effects for functionalized single walled black phosphorus tubes. Nanotechnology, 2019, 30, 145201.</td><td>1.3</td><td>21</td></tr><tr><td>11</td><td>Structural and magneto-electronic properties and electric field-mediated effects for transition metal-terminated zigzag h-BN nanoribbons. Physical Chemistry Chemical Physics, 2017, 19, 4469-4477.</td><td>1.3</td><td>17</td></tr><tr><td>12</td><td>Insight into negative differential resistance in polyphenylene molecular device with graphene electrodes. Organic Electronics, 2016, 33, 1-8.</td><td>1.4</td><td>15</td></tr><tr><td>13</td><td>Magneto-electronics, transport properties, and tuning effects of arsenene armchair nanotubes doped with transition metal atoms. Nanotechnology, 2020, 31, 315206.</td><td>1.3</td><td>15</td></tr><tr><td>14</td><td>Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms. Physical Chemistry Chemical Physics, 2015, 17, 24020-24028.</td><td>1.3</td><td>14</td></tr><tr><td>15</td><td>Structural and magneto-electronic properties of transition metal doped phosphorus nanotubes. Physical Chemistry Chemical Physics, 2018, 20, 13574-13579.</td><td>1.3</td><td>14</td></tr><tr><td>16</td><td>Electronic structure, strain effects and transport property of armchair graphene nanoribbon with variously possible edge oxidation. Journal Physics D: Applied Physics, 2019, 52, 475301.</td><td>1.3</td><td>12</td></tr><tr><td>17</td><td>Electronic and transport properties and physical field coupling effects for net-Y nanoribbons. Nanotechnology, 2019, 30, 485703.</td><td>1.3</td><td>10</td></tr><tr><td></td><td></td><td></td><td></td></tr></tbody></table>

Edge chemistry and tensile strain effects on the magnetic properties of 1D VSe₂ structures. Journal of Materials Chemistry C, 2021, 9, 12904-12919.

ZHEN-HUA ZHANG

#	Article	IF	CITATIONS
19	BN nanoflake quantum-dot arrays: structural stability, and electronic and half-metallic properties. Physical Chemistry Chemical Physics, 2017, 19, 20137-20146.	1.3	9
20	Electronic and transport properties of zigzag phosphorene nanoribbons with nonmetallic atom terminations. RSC Advances, 2020, 10, 1400-1409.	1.7	7
21	Controlling the electronic transport property of a molecular organic device by the heavy metal atomic manipulation. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 116, 113732.	1.3	6
22	Strain-induced rich magnetic phase transitions and enhancement of magnetic stability for O-terminated h-BN nanoribbons. Journal of Physics Condensed Matter, 2019, 31, 145301.	0.7	5
23	Designing bifuncitonal molecular devices with a metalloporphyrin dimer. Physical Chemistry Chemical Physics, 2020, 22, 4080-4085.	1.3	5
24	Phagraphene nanoribbons: half-metallicity and magnetic phase transition by functional groups and electric field. Journal of Physics Condensed Matter, 2018, 30, 445802.	0.7	4
25	Stable C2N/h-BN van der Waals heterostructure: flexibly tunable electronic and optic properties. Journal of Physics Condensed Matter, 2020, 32, 475001.	0.7	4
26	Multifunctional spintronic device based on zigzag SiC nanoribbon heterojunction via edge asymmetric dual-hydrogenation. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 138, 115098.	1.3	4
27	Geometry, induced magnetism and modified electronic behaviors for magnetic atom adsorption on antimonene nanotubes. Physical Chemistry Chemical Physics, 2020, 22, 23665-23677.	1.3	3
28	Magneto-electronic properties, carrier mobility and strain effects of InSe nanoribbon. Journal of Physics Condensed Matter, 2020, 32, 015303.	0.7	3
29	Structure stability, magneto-electronic properties, and modulation effects of Fe ₃ GeTe ₂ nanoribbons. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 208502.	0.2	3
30	Strain engineering of electronic structure and mechanical switch device for edge modified Net-Y nanoribbons. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 046102.	0.2	3
31	Magneto-electronic properties of InSe nanoribbons terminated with non-metallic atoms and its strain modulation. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 198503.	0.2	2
32	Magneto-electronic property in zigzag phosphorene nanoribbons doped with transition metal atom. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 056101.	0.2	1
33	Structural stability, magneto-electronic properties, and tuning effects for transition metal-doped net-Y nanoribbons. Journal Physics D: Applied Physics, 2020, 53, 485001.	1.3	1
34	Giant rectification of ferromagnetic zigzag SiC nanoribbons connecting anthradithiophene molecules. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 078501.	0.2	1