Yunyun Duan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6584068/publications.pdf

Version: 2024-02-01

471371 552653 47 833 17 26 citations h-index g-index papers 48 48 48 1113 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Comparison of grey matter atrophy between patients with neuromyelitis optica and multiple sclerosis: A voxel-based morphometry study. European Journal of Radiology, 2012, 81, e110-e114.	1.2	7 3
2	Differential patterns of spinal cord and brain atrophy in NMO and MS. Neurology, 2015, 84, 1465-1472.	1.5	70
3	Disrupted topological organization of structural and functional brain connectomes in clinically isolated syndrome and multiple sclerosis. Scientific Reports, 2016, 6, 29383.	1.6	65
4	Functional Brain Network Alterations in Clinically Isolated Syndrome and Multiple Sclerosis: A Graph-based Connectome Study. Radiology, 2017, 282, 534-541.	3.6	58
5	Multimodal Quantitative MR Imaging of the Thalamus in Multiple Sclerosis and Neuromyelitis Optica. Radiology, 2015, 277, 784-792.	3.6	35
6	Progressive brain rich-club network disruption from clinically isolated syndrome towards multiple sclerosis. NeuroImage: Clinical, 2018, 19, 232-239.	1.4	33
7	Radiomics in multiple sclerosis and neuromyelitis optica spectrum disorder. European Radiology, 2019, 29, 4670-4677.	2.3	25
8	Prediction of H3K27M-mutant brainstem glioma by amide proton transfer–weighted imaging and its derived radiomics. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 4426-4436.	3.3	25
9	Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography. BioMed Research International, 2015, 2015, 1-11.	0.9	24
10	Different patterns of longitudinal brain and spinal cord changes and their associations with disability progression in NMO and MS. European Radiology, 2018, 28, 96-103.	2.3	24
11	Brain structural alterations in MOG antibody diseases: a comparative study with AQP4 seropositive NMOSD and MS. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 709-716.	0.9	24
12	Altered thalamic functional connectivity in multiple sclerosis. European Journal of Radiology, 2015, 84, 703-708.	1.2	23
13	Different patterns of cerebral perfusion in SLE patients with and without neuropsychiatric manifestations. Human Brain Mapping, 2020, 41, 755-766.	1.9	23
14	Automatic multiclass intramedullary spinal cord tumor segmentation on MRI with deep learning. NeuroImage: Clinical, 2021, 31, 102766.	1.4	23
15	Deep learning–based methods may minimize GBCA dosage in brain MRI. European Radiology, 2021, 31, 6419-6428.	2.3	23
16	Disrupted Module Efficiency of Structural and Functional Brain Connectomes in Clinically Isolated Syndrome and Multiple Sclerosis. Frontiers in Human Neuroscience, 2018, 12, 138.	1.0	22
17	White matter microstructural alterations in clinically isolated syndrome and multiple sclerosis. Journal of Clinical Neuroscience, 2018, 53, 27-33.	0.8	19
18	White matter atrophy in brain of neuromyelitis optica: a voxel-based morphometry study. Acta Radiologica, 2014, 55, 589-593.	0.5	17

#	Article	IF	CITATIONS
19	Whole brain functional connectivity in clinically isolated syndrome without conventional brain MRI lesions. European Radiology, 2016, 26, 2982-2991.	2.3	17
20	Multimodal characterization of gray matter alterations in neuromyelitis optica. Multiple Sclerosis Journal, 2018, 24, 1308-1316.	1.4	15
21	Acceleration of Brain TOF-MRA with Compressed Sensitivity Encoding: A Multicenter Clinical Study. American Journal of Neuroradiology, 2021, 42, 1208-1215.	1.2	15
22	Metabolic changes in normal-appearing white matter in patients with neuromyelitis optica and multiple sclerosis: a comparative magnetic resonance spectroscopy study. Acta Radiologica, 2017, 58, 1132-1137.	0.5	14
23	Accelerating Brain 3D T1-Weighted Turbo Field Echo MRI Using Compressed Sensing-Sensitivity Encoding (CS-SENSE). European Journal of Radiology, 2020, 131, 109255.	1.2	14
24	Brain MRI characteristics in neuromyelitis optica spectrum disorders: A large multi-center retrospective study in China. Multiple Sclerosis and Related Disorders, 2020, 46, 102475.	0.9	13
25	Primary Categorizing and Masking Cerebral Small Vessel Disease Based on "Deep Learning System― Frontiers in Neuroinformatics, 2020, 14, 17.	1.3	12
26	A transfer learning approach to few-shot segmentation of novel white matter tracts. Medical Image Analysis, 2022, 79, 102454.	7.0	12
27	Brain structural and functional alterations in MOG antibody disease. Multiple Sclerosis Journal, 2021, 27, 1350-1363.	1.4	11
28	Syphilitic meningomyelitis misdiagnosed as spinal cord tumor: Case and review. Journal of Spinal Cord Medicine, 2021, 44, 789-793.	0.7	10
29	Aberrant multimodal brain networks in patients with antiâ€NMDA receptor encephalitis. CNS Neuroscience and Therapeutics, 2021, 27, 652-663.	1.9	9
30	A deep learning algorithm for white matter hyperintensity lesion detection and segmentation. Neuroradiology, 2022, 64, 727-734.	1.1	9
31	Volumetric segmentation of white matter tracts with label embedding. NeuroImage, 2022, 250, 118934.	2.1	9
32	Structural and functional hippocampal alterations in Multiple sclerosis and neuromyelitis optica spectrum disorder. Multiple Sclerosis Journal, 2022, 28, 707-717.	1.4	8
33	Altered Brain Structure and Functional Connectivity of Primary Visual Cortex in Optic Neuritis. Frontiers in Human Neuroscience, 2018, 12, 473.	1.0	7
34	Subtyping relapsing–remitting multiple sclerosis using structural MRI. Journal of Neurology, 2021, 268, 1808-1817.	1.8	7
35	Persistently Gadolinium-Enhancing Lesion Is a Predictor of Poor Prognosis in NMOSD Attack: a Clinical Trial. Neurotherapeutics, 2021, 18, 868-877.	2.1	6
36	Deep Brain Stimulation Modulates Multiple Abnormal Resting-State Network Connectivity in Patients With Parkinson's Disease. Frontiers in Aging Neuroscience, 2022, 14, 794987.	1.7	6

#	Article	IF	CITATIONS
37	Structural and Functional Alterations in Visual Pathway After Optic Neuritis in MOG Antibody Disease: A Comparative Study With AQP4 Seropositive NMOSD. Frontiers in Neurology, 2021, 12, 673472.	1.1	5
38	The role of multimodal MRI in mild cognitive impairment and Alzheimer's disease. Journal of Neuroimaging, 2022, 32, 148-157.	1.0	5
39	Altered Cerebral Blood Flow in Alzheimer's Disease With Depression. Frontiers in Psychiatry, 2021, 12, 687739.	1.3	4
40	Evaluating [68Ga]Ga-p14-032 as a Novel PET Tracer for Diagnosis Cerebral Amyloid Angiopathy. Frontiers in Neurology, 2021, 12, 702185.	1,1	4
41	Segmentation of Cerebral Small Vessel Diseases-White Matter Hyperintensities Based on a Deep Learning System. Frontiers in Medicine, 2021, 8, 681183.	1.2	3
42	Prediction of H3 K27M-mutant in midline gliomas by magnetic resonance imaging: a systematic review and meta-analysis. Neuroradiology, 2022, 64, 1311-1319.	1,1	3
43	Probing individual-level structural atrophy in frontal glioma patients. Neurosurgical Review, 2022, 45, 2845-2855.	1.2	3
44	Baseline Brain Activity Changes in Patients With Single and Relapsing Optic Neuritis. Frontiers in Human Neuroscience, 2018, 12, 144.	1.0	2
45	Risk Factors and Imaging Mechanisms of Fatigue After Mild Ischemic Stroke: An Exploratory Study From a Single Chinese Center. Frontiers in Neurology, 2021, 12, 649021.	1.1	2
46	Acceleration of Brain Susceptibility-Weighted Imaging with Compressed Sensitivity Encoding: A Prospective Multicenter Study. American Journal of Neuroradiology, 2022, 43, 402-409.	1.2	1
47	Structural and Functional Characterization of Gray Matter Alterations in Female Patients With Neuropsychiatric Systemic Lupus. Frontiers in Neuroscience, 2022, 16, 839194.	1.4	1