Miguel Elias M Campista

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6584026/publications.pdf

Version: 2024-02-01

69 papers 1,010 citations

758635 12 h-index 25 g-index

81 all docs

81 docs citations

81 times ranked 797 citing authors

#	Article	IF	CITATIONS
1	Towards drivers' safety with multi-criteria car navigation systems. Future Generation Computer Systems, 2022, 135, 1-9.	4.9	3
2	Stateful DRF: Considering the Past in a Multi-Resource Allocation. IEEE Transactions on Computers, 2021, 70, 1094-1105.	2.4	6
3	A survey on deep learning for challenged networks: Applications and trends. Journal of Network and Computer Applications, 2021, 194, 103213.	5.8	28
4	Towards Edge Computing Using Early-Exit Convolutional Neural Networks. Information (Switzerland), 2021, 12, 431.	1.7	9
5	An Accurate GNSS-Based Redundant Safe Braking System for Urban Elevated Rail Maglev Trains. Information (Switzerland), 2020, 11, 531.	1.7	1
6	Opportunistic Data Gathering in IoT Networks using Discrete Optimization. , 2020, , .		0
7	Towards participatory sensing of regions of interest with adaptive sampling rate. Vehicular Communications, 2020, 25, 100254.	2.7	1
8	Wi-Fi Direct Performance Evaluation for V2P Communications. Journal of Sensor and Actuator Networks, 2020, 9, 28.	2.3	7
9	An accurate cooperative positioning system for vehicular safety applications. Computers and Electrical Engineering, 2020, 83, 106591.	3.0	12
10	Impact of relative speed on node vicinity dynamics in VANETs. Wireless Networks, 2019, 25, 1895-1912.	2.0	4
10	Impact of relative speed on node vicinity dynamics in VANETs. Wireless Networks, 2019, 25, 1895-1912. Unsupervised Detection of Adversarial Collaboration in Data-Driven Networking., 2019, , .	2.0	1
		2.0	
11	Unsupervised Detection of Adversarial Collaboration in Data-Driven Networking. , 2019, , .	2.0	1
11 12	Unsupervised Detection of Adversarial Collaboration in Data-Driven Networking., 2019, , . A Case for Spraying Packets in Software Middleboxes., 2018, , . SensingBus: Using Bus Lines and Fog Computing for Smart Sensing the City. IEEE Cloud Computing,		1 12
11 12 13	Unsupervised Detection of Adversarial Collaboration in Data-Driven Networking., 2019, , . A Case for Spraying Packets in Software Middleboxes., 2018, , . SensingBus: Using Bus Lines and Fog Computing for Smart Sensing the City. IEEE Cloud Computing, 2018, 5, 58-69. Building an IaaS cloud with droplets: a collaborative experience with OpenStack. Journal of Network	5.3	1 12 21
11 12 13	Unsupervised Detection of Adversarial Collaboration in Data-Driven Networking., 2019, , . A Case for Spraying Packets in Software Middleboxes., 2018, , . SensingBus: Using Bus Lines and Fog Computing for Smart Sensing the City. IEEE Cloud Computing, 2018, 5, 58-69. Building an IaaS cloud with droplets: a collaborative experience with OpenStack. Journal of Network and Computer Applications, 2018, 117, 59-71. The Power of Quasi-Shortest Paths: \$ho\$-Geodesic Betweenness Centrality. IEEE Transactions on	5.3 5.8	1 12 21 9
11 12 13 14	Unsupervised Detection of Adversarial Collaboration in Data-Driven Networking., 2019, , . A Case for Spraying Packets in Software Middleboxes., 2018, , . SensingBus: Using Bus Lines and Fog Computing for Smart Sensing the City. IEEE Cloud Computing, 2018, 5, 58-69. Building an laaS cloud with droplets: a collaborative experience with OpenStack. Journal of Network and Computer Applications, 2018, 117, 59-71. The Power of Quasi-Shortest Paths: \$ho\$-Geodesic Betweenness Centrality. IEEE Transactions on Network Science and Engineering, 2017, 4, 187-200.	5.3 5.8	1 12 21 9

#	Article	IF	Citations
19	Weighted betweenness for multipath networks. , 2016, , .		3
20	On the accuracy of data sensing in the presence of mobility. , 2016, , .		1
21	Virtualizing vehicular node resources: Feasibility study of virtual machine migration. Vehicular Communications, 2016, 4, 39-46.	2.7	32
22	TraC: A Trajectory-aware Content distribution strategy for vehicular networks. Vehicular Communications, 2016, 5, 18-34.	2.7	6
23	Software networks. Annales Des Telecommunications/Annals of Telecommunications, 2016, 71, 569-572.	1.6	O
24	Reliability and Survivability Analysis of Data Center Network Topologies. Journal of Network and Systems Management, 2016, 24, 346-392.	3.3	40
25	Scalable Wireless Traffic Capture Through Community Detection and Trace Similarity. IEEE Transactions on Mobile Computing, 2016, 15, 1757-1769.	3.9	3
26	Time of arrival prediction with dynamic route tracking for public transportation systems. , 2015, , .		2
27	Server placement with shared backups for disaster-resilient clouds. Computer Networks, 2015, 93, 423-434.	3.2	26
28	A Public Transportation Monitoring System Using IEEE 802.11 Networks. , 2014, , .		3
29	Latency versus survivability in geo-distributed data center design. , 2014, , .		14
30	Geo-Distributed Data Centers: Distance and Robustness Trade-Offs. , 2014, , .		0
31	WiBus: A Wi-Fi based monitoring system for public transportation with dynamic route tracking. , 2014, , .		2
32	FITS: A flexible virtual network testbed architecture. Computer Networks, 2014, 63, 221-237.	3.2	34
33	Network resource control for Xen-based virtualized software routers. Computer Networks, 2014, 64, 71-88.	3.2	9
34	COTraMS: A Collaborative and Opportunistic Traffic Monitoring System. IEEE Transactions on Intelligent Transportation Systems, 2014, 15, 949-958.	4.7	11
35	Challenges and Research Directions for the Future Internetworking. IEEE Communications Surveys and Tutorials, 2014, 16, 1050-1079.	24.8	17
36	Network design requirements for disaster resilience in laaS clouds. , 2014, 52, 52-58.		49

#	Article	lF	Citations
37	A trajectory-based approach to improve delivery in drive-thru Internet scenarios. , 2013, , .		1
38	Trace selection for improved WLAN monitoring. , 2013, , .		2
39	Examining vicinity dynamics in opportunistic networks. , 2013, , .		3
40	A Decentralized Traffic Monitoring System based on vehicle-to-infrastructure communications. , 2013, , .		3
41	Towards a pluralist internet using a virtual machine server for network customization. , 2012, , .		2
42	Big wireless measurement campaigns. , 2012, , .		1
43	A reliability analysis of datacenter topologies. , 2012, , .		21
44	Evaluation of an opportunistic collaborative traffic monitoring system., 2012,,.		2
45	Opportunistic system for collaborative traffic monitoring using existing IEEE 802.11 networks. , 2012, ,		4
46	A routing protocol suitable for backhaul access in wireless mesh networks. Computer Networks, 2012, 56, 703-718.	3.2	9
47	VNEXT: Virtual network management for Xen-based Testbeds. , 2011, , .		11
48	OMNI: OpenFlow MaNagement Infrastructure. , 2011, , .		32
49	An experimental analysis of routing inconsistency in indoor wireless mesh networks. , 2011, , .		O
50	Virtual networks: isolation, performance, and trends. Annales Des Telecommunications/Annals of Telecommunications, 2011, 66, 339-355.	1.6	37
51	Improving the multiple access method of home networks over the electrical wiring. Annales Des Telecommunications/Annals of Telecommunications, 2011, 66, 683-694.	1.6	4
52	Minimum loss multiplicative routing metrics for wireless mesh networks. Journal of Internet Services and Applications, 2011, 1, 201-214.	1.6	20
53	XTC: A Throughput Control Mechanism for Xen-Based Virtualized Software Routers. , 2011, , .		8
54	OpenFlow and Xen-Based Virtual Network Migration. International Federation for Information Processing, 2010, , 170-181.	0.4	35

#	Article	IF	Citations
55	Veer: A trajectory-based peer selection algorithm for networks of vehicles. , 2010, , .		3
56	Measuring the capacity of in-car to in-car vehicular networks. , 2009, 47, 128-136.		49
57	Routing Metrics and Protocols for Wireless Mesh Networks. IEEE Network, 2008, 22, 6-12.	4.9	233
58	Implementing the Expected Transmission Time Metric for OLSR Wireless Mesh Networks. , 2008, , .		34
59	On the impact of user mobility on peer-to-peer video streaming. IEEE Wireless Communications, 2008, 15, 54-62.	6.6	18
60	WPR: A Proactive Routing Protocol Tailored to Wireless Mesh Networks. , 2008, , .		7
61	The ad hoc return channel: a low-cost solution for Brazilian interactive digital TV., 2007, 45, 136-143.		26
62	Privileging long-life packets in multihop wireless networks. , 2007, , .		0
63	A Survey on Wireless Ad Hoc Networks. , 2006, , 1-33.		34
64	Wireless Ad Hoc Networks on Underserved Communities: An Efficient Solution for Interactive Digital TV. International Federation for Information Processing, 2006, , 187-198.	0.4	2
65	Improving the Data Transmission Throughput over the Home Electrical Wiring. , 2005, , .		12
66	Improving the multiple access method of CSMA/CA home networks. , 0, , .		10
67	Gerenciamento do Cache em Gateways IoT com atualização oportunista de Dados e Seleção Dinâmica de Grupos. , 0, , .		O
68	Tecnologia Blockchain para Auditoria em Redes Móveis. , 0, , .		0
69	A bi-objective optimization model for segment routing traffic engineering. Annales Des Telecommunications/Annals of Telecommunications, 0 , 1 .	1.6	0