
Fuyuko Takata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6583927/publications.pdf Version: 2024-02-01

Ευνικό Τλέλτλ

#	Article	IF	CITATIONS
1	Reactive pericytes in early phase are involved in glial activation and late-onset hypersusceptibility to pilocarpine-induced seizures in traumatic brain injury model mice. Journal of Pharmacological Sciences, 2021, 145, 155-165.	2.5	11
2	Inflammatory Mediators Released by Brain Pericytes as Sensors and Effectors in Blood-Brain Barrier Dysfunction. Pancreatic Islet Biology, 2021, , 145-164.	0.3	0
3	Interleukin-1Î ² in peripheral monocytes is associated with seizure frequency in pediatric drug-resistant epilepsy. Journal of Neuroimmunology, 2021, 352, 577475.	2.3	15
4	Links between Immune Cells from the Periphery and the Brain in the Pathogenesis of Epilepsy: A Narrative Review. International Journal of Molecular Sciences, 2021, 22, 4395.	4.1	23
5	The Neuroinflammatory Role of Pericytes in Epilepsy. Biomedicines, 2021, 9, 759.	3.2	24
6	Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Frontiers in Cellular Neuroscience, 2021, 15, 661838.	3.7	147
7	Oligodendrocytes upregulate blood-brain barrier function through mechanisms other than the PDGF-BB/PDGFRα pathway in the barrier-tightening effect of oligodendrocyte progenitor cells. Neuroscience Letters, 2020, 715, 134594.	2.1	24
8	Serum amyloid A-induced blood-brain barrier dysfunction associated with decreased claudin-5 expression in rat brain endothelial cells and its inhibition by high-density lipoprotein in vitro. Neuroscience Letters, 2020, 738, 135352.	2.1	16
9	Brain-transportable soy dipeptide, Tyr-Pro, attenuates amyloid β peptide25-35-induced memory impairment in mice. Npj Science of Food, 2020, 4, 7.	5.5	24
10	Feeding-produced subchronic high plasma levels of uric acid improve behavioral dysfunction in 6-hydroxydopamine-induced mouse model of Parkinson's disease. Behavioural Pharmacology, 2019, 30, 89-94.	1.7	6
11	Oncostatin-M-Reactive Pericytes Aggravate Blood–Brain Barrier Dysfunction by Activating JAK/STAT3 Signaling In Vitro. Neuroscience, 2019, 422, 12-20.	2.3	15
12	Increased Plasma VEGF Levels in Patients with Cerebral Large Artery Disease Are Associated with Cerebral Microbleeds. Cerebrovascular Diseases Extra, 2019, 9, 25-30.	1.5	1
13	Analysis of Catecholamine and Their Metabolites in Mice Brain by Liquid Chromatography-Mass Spectrometry Using Sulfonated Mixed-mode Copolymer Column. Analytical Sciences, 2019, 35, 433-439.	1.6	12
14	Monomeric α-synuclein induces blood–brain barrier dysfunction through activated brain pericytes releasing inflammatory mediators in vitro. Microvascular Research, 2019, 124, 61-66.	2.5	71
15	Brain-transportable dipeptides across the blood-brain barrier in mice. Scientific Reports, 2019, 9, 5769.	3.3	44
16	Activation of the α7 nicotinic acetylcholine receptor upregulates blood-brain barrier function through increased claudin-5 and occludin expression in rat brain endothelial cells. Neuroscience Letters, 2019, 694, 9-13.	2.1	24
17	TNF-α-sensitive brain pericytes activate microglia by releasing IL-6 through cooperation between lκB-NFκB and JAK-STAT3 pathways. Brain Research, 2018, 1692, 34-44.	2.2	72
18	Oncostatin M–induced bloodâ€brain barrier impairment is due to prolonged activation of STAT3 signaling in vitro. Journal of Cellular Biochemistry, 2018, 119, 9055-9063.	2.6	18

Γυγυκο Τακατα

#	Article	IF	CITATIONS
19	Oncostatin M downregulates the brain endothelial barrier integrity through long-lasting activation of JAK/STAT3 pathway. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-1-43.	0.0	0
20	Dysregulation of the CNS supporting vascular and glial cells induces the late posttraumatic epilepsy in mice with mild traumatic brain injury. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-1-87.	0.0	1
21	In response to monomeric α-synuclein, brain pericytes release inflammatory cytokines to impair brain endothelial barrier. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-1-28.	0.0	0
22	Effect of the heat-not-burn tobacco-extracted substances on the brain endothelial barrier function in vitro. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-13-5.	0.0	0
23	Role of thrombin-PAR1-PKCÎ∫δaxis in brain pericytes in thrombin-induced MMP-9 production and blood–brain barrier dysfunction in vitro. Neuroscience, 2017, 350, 146-157.	2.3	57
24	Contribution of thrombin-reactive brain pericytes to blood-brain barrier dysfunction in an in vivo mouse model of obesity-associated diabetes and an in vitro rat model. PLoS ONE, 2017, 12, e0177447.	2.5	30
25	Brain pericytes are the most thrombin-sensitive matrix metalloproteinase-9-releasing cell type constituting the blood–brain barrier in vitro. Neuroscience Letters, 2015, 599, 109-114.	2.1	66
26	Elevated permeability of the blood–brain barrier in mice intratracheally administered porcine pancreatic elastase. Journal of Pharmacological Sciences, 2015, 129, 78-81.	2.5	9
27	Brain pericyte-derived soluble factors enhance insulin sensitivity in GT1-7 hypothalamic neurons. Biochemical and Biophysical Research Communications, 2015, 457, 532-537.	2.1	13
28	Tumor necrosis factor-α-stimulated brain pericytes possess a unique cytokine and chemokine release profile and enhance microglial activation. Neuroscience Letters, 2014, 578, 133-138.	2.1	64
29	Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells. PLoS ONE, 2014, 9, e100152.	2.5	31
30	Metformin induces up-regulation of blood–brain barrier functions by activating AMP-activated protein kinase in rat brain microvascular endothelial cells. Biochemical and Biophysical Research Communications, 2013, 433, 586-590.	2.1	68
31	In Vitro Blood-Brain Barrier Models Using Brain Capillary Endothelial Cells Isolated from Neonatal and Adult Rats Retain Age-Related Barrier Properties. PLoS ONE, 2013, 8, e55166.	2.5	53
32	Lipopolysaccharide-activated microglia lower P-glycoprotein function in brain microvascular endothelial cells. Neuroscience Letters, 2012, 524, 45-48.	2.1	31
33	Autocrine and paracrine up-regulation of blood–brain barrier function by plasminogen activator inhibitor-1. Microvascular Research, 2011, 81, 103-107.	2.5	36
34	Partial hepatectomy aggravates cyclosporin A-induced neurotoxicity by lowering the function of the blood–brain barrier in mice. Life Sciences, 2011, 88, 529-534.	4.3	5
35	Brain pericytes among cells constituting the blood-brain barrier are highly sensitive to tumor necrosis factor-1±, releasing matrix metalloproteinase-9 and migrating in vitro. Journal of Neuroinflammation, 2011, 8, 106.	7.2	150
36	Tumor Necrosis Factor-α Mediates the Blood–Brain Barrier Dysfunction Induced by Activated Microglia in Mouse Brain Microvascular Endothelial Cells. Journal of Pharmacological Sciences, 2010, 112, 251-254.	2.5	138

Γυγυκο Τακατα

#	Article	IF	CITATIONS
37	Lipopolysaccharide-Activated Microglia Induce Dysfunction of the Blood–Brain Barrier in Rat Microvascular Endothelial Cells Co-Cultured with Microglia. Cellular and Molecular Neurobiology, 2010, 30, 247-253.	3.3	139
38	Cyclosporin A induces hyperpermeability of the blood–brain barrier by inhibiting autocrine adrenomedullin-mediated up-regulation of endothelial barrier function. European Journal of Pharmacology, 2010, 644, 5-9.	3.5	25
39	Disruption of the blood–brain barrier in collagen-induced arthritic mice. Neuroscience Letters, 2010, 482, 208-211.	2.1	32
40	Detachment of Brain Pericytes from the Basal Lamina is Involved in Disruption of the Blood–Brain Barrier Caused by Lipopolysaccharide-Induced Sepsis in Mice. Cellular and Molecular Neurobiology, 2009, 29, 309-316.	3.3	156
41	Adrenomedullin-induced relaxation of rat brain pericytes is related to the reduced phosphorylation of myosin light chain through the cAMP/PKA signaling pathway. Neuroscience Letters, 2009, 449, 71-75.	2.1	23
42	Oncostatin M induces functional and structural impairment of blood–brain barriers comprised of rat brain capillary endothelial cells. Neuroscience Letters, 2008, 441, 163-166.	2.1	35
43	Protective Action of Indapamide, a Thiazide-Like Diuretic, on Ischemia-Induced Injury and Barrier Dysfunction in Mouse Brain Microvascular Endothelial Cells. Journal of Pharmacological Sciences, 2007, 103, 323-327.	2.5	19
44	Inhibition of Transforming Growth Factor-β Production in Brain Pericytes Contributes to Cyclosporin A-Induced Dysfunction of the Blood-Brain Barrier. Cellular and Molecular Neurobiology, 2007, 27, 317-328.	3.3	28
45	Adverse Effect of Cyclosporin A on Barrier Functions of Cerebral Microvascular Endothelial Cells After Hypoxia-reoxygenation Damage InÂVitro. Cellular and Molecular Neurobiology, 2007, 27, 889-899.	3.3	24
46	Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-β production. Brain Research, 2005, 1038, 208-215.	2.2	315
47	Nitric oxide mediates cyclosporine-induced impairment of the blood–brain barrier in cocultures of mouse brain endothelial cells and rat astrocytes. European Journal of Pharmacology, 2004, 505, 51-59.	3.5	25
48	Transforming Growth Factor-Â1 Upregulates the Tight Junction and P-glycoprotein of Brain Microvascular Endothelial Cells. Cellular and Molecular Neurobiology, 2004, 24, 491-497.	3.3	90