
Anthony J Kinloch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6583920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling the quasi-static flexural behaviour of composite sandwich structures with uniform- and graded-density foam cores. Engineering Fracture Mechanics, 2022, 259, 108121.	2.0	9
2	The essential work of fracture method for the characterisation of fusion bonding in 3D printed short carbon-fibre reinforced polyamide 6 thin films. Composites Science and Technology, 2022, 230, 109361.	3.8	3
3	Thoughts on the durability and damage tolerance assessment of adhesively-bonded joints. Theoretical and Applied Fracture Mechanics, 2022, 119, 103319.	2.1	1
4	The effectiveness of patch repairs to restore the impact properties of carbon-fibre reinforced-plastic composites. Engineering Fracture Mechanics, 2022, 270, 108570.	2.0	9
5	3D printed carbon-fibre reinforced composite lattice structures with good thermal-dimensional stability. Composites Science and Technology, 2022, 227, 109599.	3.8	13
6	Examining the effect of graphene nanoplatelets on the corrosion resistance of epoxy coatings. International Journal of Adhesion and Adhesives, 2021, 104, 102723.	1.4	21
7	Characterisation of fusion bonding between filaments of thin 3D printed polyamide 6 using an essential work of fracture method. Journal of Materials Science, 2021, 56, 2777-2794.	1.7	13
8	Strengthening and toughening epoxy polymer at cryogenic temperature using cupric oxide nanorods. Composites Science and Technology, 2021, 208, 108762.	3.8	25
9	Fatigue crack growth in epoxy polymer nanocomposites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200436.	1.6	8
10	Improving the delamination resistance and impact damage tolerance of carbon fibre-epoxy composites using multi-scale fibre toughening. Composites Part A: Applied Science and Manufacturing, 2021, 150, 106624.	3.8	24
11	Experimental investigations on the effects of projectile hardness on the impact response of fibre-reinforced composite laminates. International Journal of Lightweight Materials and Manufacture, 2020, 3, 77-87.	1.3	7
12	A three-dimensional elastic-plastic damage model for predicting the impact behaviour of fibre-reinforced polymer-matrix composites. Composites Part B: Engineering, 2020, 201, 108389.	5.9	51
13	The behaviour of thermoplastic and thermoset carbon fibre composites subjected to low-velocity and high-velocity impact. Journal of Materials Science, 2020, 55, 15741-15768.	1.7	44
14	Investigations on the impact behaviour of fibre-reinforced composites: effect of impact energy and impactor shape. Procedia Structural Integrity, 2020, 28, 106-115.	0.3	0
15	Effects of Impactor Geometry on the Low-Velocity Impact Behaviour of Fibre-Reinforced Composites: An Experimental and Theoretical Investigation. Applied Composite Materials, 2020, 27, 533-553.	1.3	26
16	Requirements and Variability Affecting the Durability of Bonded Joints. Materials, 2020, 13, 1468.	1.3	17
17	The behaviour of fibre-reinforced composites subjected to a soft impact-loading: An experimental and numerical study. Engineering Failure Analysis, 2020, 111, 104448.	1.8	19
18	On the extent of fracture toughness transfer from 1D/2D nanomodified epoxy matrices to glass fibre composites. Journal of Materials Science, 2020, 55, 4717-4733.	1.7	24

#	Article	IF	CITATIONS
19	A way forward for industry to determine valid cyclic-fatigue relationships for polymer-matrix fibre composites. Procedia Structural Integrity, 2020, 28, 26-38.	0.3	5
20	A means for industry to determine the economic life of bonded joints under representative operation flight loads. Procedia Structural Integrity, 2020, 28, 370-380.	0.3	4
21	Liquid metal synthesis of two-dimensional aluminium oxide platelets to reinforce epoxy composites. Composites Science and Technology, 2019, 181, 107708.	3.8	15
22	The Impact Performance of Woven-Fabric Thermoplastic and Thermoset Composites Subjected to High-Velocity Soft- and Hard-Impact Loading. Applied Composite Materials, 2019, 26, 1389-1410.	1.3	27
23	Experimental and numerical studies on the behaviour of fibre-reinforced composites subjected to soft impact loading. Procedia Structural Integrity, 2019, 17, 992-1001.	0.3	9
24	Fracture and fatigue behaviour of epoxy nanocomposites containing 1-D and 2-D nanoscale carbon fillers. Engineering Fracture Mechanics, 2018, 203, 102-114.	2.0	37
25	Increasing the fatigue resistance of epoxy nanocomposites by aligning graphene nanoplatelets. International Journal of Fatigue, 2018, 113, 88-97.	2.8	24
26	The electric field alignment of short carbon fibres to enhance the toughness of epoxy composites. Composites Part A: Applied Science and Manufacturing, 2018, 106, 11-23.	3.8	36
27	High-velocity impact deformation and perforation of fibre metal laminates. Journal of Materials Science, 2018, 53, 4209-4228.	1.7	41
28	Effects of the core density on the quasi-static flexural and ballistic performance of fibre-composite skin/foam-core sandwich structures. Journal of Materials Science, 2018, 53, 16393-16414.	1.7	26
29	Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres. Composites Science and Technology, 2018, 167, 115-125.	3.8	56
30	Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and Conductors. ACS Applied Materials & amp; Interfaces, 2017, 9, 14207-14215.	4.0	239
31	A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide. Journal of Materials Science, 2017, 52, 7323-7344.	1.7	63
32	Aligning carbon nanofibres in glass-fibre/epoxy composites to improve interlaminar toughness and crack-detection capability. Composites Science and Technology, 2017, 152, 46-56.	3.8	54
33	Using Carbon Nanofibre Sensors for In-situ Detection and Monitoring of Disbonds in Bonded Composite Joints. Procedia Engineering, 2017, 188, 362-368.	1.2	7
34	Enhancing fatigue resistance and damage characterisation in adhesively-bonded composite joints by carbon nanofibres. Composites Science and Technology, 2017, 149, 116-126.	3.8	55
35	Quasi-static bending and low velocity impact performance of monolithic and laminated glass windows employing chemically strengthened glass. European Journal of Mechanics, A/Solids, 2017, 63, 165-186.	2.1	36
36	From matrix nano- and micro-phase tougheners to composite macro-properties. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150275.	1.6	15

#	Article	IF	CITATIONS
37	A novel route for tethering graphene with iron oxide and its magnetic field alignment in polymer nanocomposites. Polymer, 2016, 97, 273-284.	1.8	42
38	In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties. Applied Nanoscience (Switzerland), 2016, 6, 1015-1022.	1.6	75
39	Strain Sensors with Adjustable Sensitivity by Tailoring the Microstructure of Graphene Aerogel/PDMS Nanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 24853-24861.	4.0	195
40	Multi-scale toughening of fibre composites using carbon nanofibres and z-pins. Composites Science and Technology, 2016, 131, 98-109.	3.8	81
41	Computing the growth of naturally-occurring disbonds in adhesively-bonded patches to metallic structures. Engineering Fracture Mechanics, 2016, 152, 162-173.	2.0	12
42	Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carbon. Materials and Design, 2016, 94, 554-564.	3.3	80
43	Mixed mode partitioning of beam-like geometries: A damage dependent solution. Engineering Fracture Mechanics, 2015, 149, 351-367.	2.0	29
44	Epoxy nanocomposites containing magnetite-carbon nanofibers aligned using a weak magnetic field. Polymer, 2015, 68, 25-34.	1.8	89
45	A study of the impact properties of adhesively-bonded aluminum alloy based on impact velocity. Journal of Mechanical Science and Technology, 2015, 29, 493-499.	0.7	12
46	Co-continuous polymer systems: A numerical investigation. Computational Materials Science, 2015, 98, 24-33.	1.4	38
47	Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon, 2015, 94, 607-618.	5.4	288
48	Improving the toughness and electrical conductivity of epoxy nanocomposites by using aligned carbon nanofibres. Composites Science and Technology, 2015, 117, 146-158.	3.8	135
49	Tough, natural-fibre composites based upon epoxy matrices. Journal of Materials Science, 2015, 50, 6947-6960.	1.7	24
50	A convenient way to represent fatigue crack growth in structural adhesives. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38, 379-391.	1.7	66
51	Modelling the interfacial peeling of pressure-sensitive adhesives. Journal of Non-Newtonian Fluid Mechanics, 2015, 222, 141-150.	1.0	37
52	Vimentin Is a Dominant Target of In Situ Humoral Immunity in Human Lupus Tubulointerstitial Nephritis. Arthritis and Rheumatology, 2014, 66, 3359-3370.	2.9	82
53	Mode I fracture in adhesively-bonded joints: A mesh-size independent modelling approach using cohesive elements. Engineering Fracture Mechanics, 2014, 115, 73-95.	2.0	53
54	Improving the fracture toughness and the cyclic-fatigue resistance of epoxy-polymer blends. Polymer, 2014, 55, 6325-6334.	1.8	57

#	Article	IF	CITATIONS
55	Immune complex formation and in situ B-cell clonal expansion in human cerebral cavernous malformations. Journal of Neuroimmunology, 2014, 272, 67-75.	1.1	26
56	Durability of asphalt mixtures: Effect of aggregate type and adhesion promoters. International Journal of Adhesion and Adhesives, 2014, 54, 100-111.	1.4	144
57	Lupus tubulointerstitial and vascular disease. Pathology, 2014, 46, S40.	0.3	1
58	The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles. Polymer, 2013, 54, 4276-4289.	1.8	186
59	The modelling of the toughening of epoxy polymers via silica nanoparticles: The effects of volume fraction and particle size. Polymer, 2013, 54, 7022-7032.	1.8	106
60	The Role of the Surface Pretreatment in the Durability of Aluminium-Alloy Structural Adhesive Joints: Mechanisms of Failure. Journal of Adhesion, 2013, 89, 369-397.	1.8	17
61	A maximum stress at a distance criterion for the prediction of crack propagation in adhesively-bonded joints. Engineering Fracture Mechanics, 2013, 97, 105-135.	2.0	31
62	The development of a novel test method to assess the durability of asphalt road–pavement materials. International Journal of Adhesion and Adhesives, 2013, 42, 1-10.	1.4	32
63	Enhanced fatigue behavior of a glass fiber reinforced hybrid particles modified epoxy nanocomposite under WISPERX spectrum load sequence. International Journal of Fatigue, 2013, 54, 25-31.	2.8	43
64	High-strain-rate fracture of adhesively bonded composite joints in DCB and TDCB specimens. International Journal of Automotive Technology, 2012, 13, 1127-1131.	0.7	9
65	A multiscale parametric study of mode I fracture in metal-to-metal low-toughness adhesive joints. International Journal of Fracture, 2012, 173, 105-133.	1.1	34
66	The fracture behaviour of adhesively-bonded composite joints: Effects of rate of test and mode of loading. International Journal of Solids and Structures, 2012, 49, 1434-1452.	1.3	73
67	Improved variable-amplitude fatigue behavior of a glass-fiber-reinforced hybrid-toughened epoxy composite. Journal of Reinforced Plastics and Composites, 2011, 30, 1783-1793.	1.6	23
68	Citrullination of autoantigens: Upstream of TNFα in the pathogenesis of rheumatoid arthritis. FEBS Letters, 2011, 585, 3681-3688.	1.3	49
69	The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. Journal of Materials Science, 2011, 46, 7525.	1.7	217
70	The effect of silica nanoparticles and carbon nanotubes on the toughness of a thermosetting epoxy polymer. Journal of Applied Polymer Science, 2011, 119, 2135-2142.	1.3	65
71	Immunization with Porphyromonas gingivalis enolase induces autoimmunity to mammalian α-enolase and arthritis in DR4-IE-transgenic mice. Arthritis and Rheumatism, 2011, 63, 3818-3823.	6.7	103
72	Modelling the fracture behaviour of adhesively-bonded joints as a function of test rate. Engineering Fracture Mechanics, 2011, 78, 973-989.	2.0	76

#	Article	IF	CITATIONS
73	Fracture behaviour of adhesively-bonded composite materials under impact loading. International Journal of Precision Engineering and Manufacturing, 2010, 11, 89-95.	1.1	36
74	The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. Journal of Materials Science, 2010, 45, 1193-1210.	1.7	331
75	Particle cavitation in rubber toughened epoxies: the role of particle size. Journal of Materials Science, 2010, 45, 3882-3894.	1.7	44
76	Peptidylarginine deiminase from <i>Porphyromonas gingivalis</i> citrullinates human fibrinogen and αâ€enolase: Implications for autoimmunity in rheumatoid arthritis. Arthritis and Rheumatism, 2010, 62, 2662-2672.	6.7	547
77	The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer, 2010, 51, 6284-6294.	1.8	386
78	The tensile fatigue behaviour of a silica nanoparticle-modified glass fibre reinforced epoxy composite. Composites Science and Technology, 2010, 70, 193-199.	3.8	181
79	Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunological Reviews, 2010, 233, 34-54.	2.8	407
80	Study on Impact Fractures of Adhesively Bonded Composite Joints. Advanced Materials Research, 2010, 123-125, 235-238.	0.3	0
81	A Critical Role for LTA ₄ H in Limiting Chronic Pulmonary Neutrophilic Inflammation. Science, 2010, 330, 90-94.	6.0	223
82	The Morphology and Fracture Properties of Thermoplastic-Toughened Epoxy Polymers. Journal of Adhesion, 2010, 86, 726-741.	1.8	91
83	The Tensile Fatigue Behavior of a GFRP Composite with Rubber Particle Modified Epoxy Matrix. Journal of Reinforced Plastics and Composites, 2010, 29, 2170-2183.	1.6	35
84	The Tensile Fatigue Behavior of a Glass-fiber Reinforced Plastic Composite Using a Hybrid-toughened Epoxy Matrix. Journal of Composite Materials, 2010, 44, 2095-2109.	1.2	60
85	The effect of rubber micro-particles and silica nano-particles on the tensile fatigue behaviour of a glass-fibre epoxy composite. Journal of Materials Science, 2009, 44, 342-345.	1.7	55
86	The cyclic-fatigue behaviour of an epoxy polymer modified with micron-rubber and nano-silica particles. Journal of Materials Science, 2009, 44, 4487-4490.	1.7	50
87	The fracture behaviour of structural adhesives under high rates of testing. Engineering Fracture Mechanics, 2009, 76, 2868-2889.	2.0	114
88	Ultra-tough and fatigue resistant. Adhesion Adhesives and Sealants, 2009, 6, 8-11.	0.1	5
89	Numerical analysis of the energy contributions in peel tests: A steady-state multilevel finite element approach. International Journal of Adhesion and Adhesives, 2008, 28, 222-236.	1.4	44
90	The fracture of glass-fibre-reinforced epoxy composites using nanoparticle-modified matrices. Journal of Materials Science, 2008, 43, 1151-1154.	1.7	98

#	Article	IF	CITATIONS
91	Failure mechanisms in adhesively bonded aluminium: an XPS and PEELS study. Surface and Interface Analysis, 2008, 40, 128-131.	0.8	5
92	Synovial fluid is a site of citrullination of autoantigens in inflammatory arthritis. Arthritis and Rheumatism, 2008, 58, 2287-2295.	6.7	236
93	Antibodies to citrullinated αâ€enolase peptide 1 are specific for rheumatoid arthritis and crossâ€react with bacterial enolase. Arthritis and Rheumatism, 2008, 58, 3009-3019.	6.7	348
94	The influence of bond line thickness and peel arm thickness on adhesive fracture toughness of rubber toughened epoxy–aluminium alloy laminates. International Journal of Adhesion and Adhesives, 2008, 28, 199-210.	1.4	49
95	The Effects of Pre-Bond Moisture on the Fracture Behaviour of Adhesively-Bonded Composite Joints. Journal of Adhesion, 2008, 84, 256-276.	1.8	32
96	Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer, 2007, 48, 530-541.	1.8	815
97	Crack growth in structural adhesive joints in aqueous environments. Journal of Materials Science, 2007, 42, 6353-6370.	1.7	37
98	The fracture and fatigue behaviour of nano-modified epoxy polymers. Journal of Materials Science, 2007, 42, 7049-7051.	1.7	156
99	Novel Self-Assembling Silane for Abhesive and Adhesive Applications. Journal of Adhesion, 2006, 82, 1117-1132.	1.8	19
100	A numerical analysis of the elastic-plastic peel test. Engineering Fracture Mechanics, 2006, 73, 2324-2335.	2.0	61
101	A critical investigation of the use of a mandrel peel method for the determination of adhesive fracture toughness of metal-polymer laminates. Engineering Fracture Mechanics, 2006, 73, 2304-2323.	2.0	17
102	The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites. Journal of Materials Science, 2006, 41, 3271-3297.	1.7	152
103	The interlaminar toughness of carbon-fibre reinforced plastic composites using â€~hybrid-toughened' matrices. Journal of Materials Science, 2006, 41, 5043-5046.	1.7	85
104	The effects of surface pretreatment on the cyclic-fatigue characteristics of bonded aluminium-alloy joints. International Journal of Adhesion and Adhesives, 2006, 26, 50-61.	1.4	45
105	Pathogenic role of antibodies to citrullinated proteins in rheumatoid arthritis. Expert Review of Clinical Immunology, 2006, 2, 365-375.	1.3	17
106	Toughness of syndiotactic polystyrene/epoxy polymer blends: microstructure and toughening mechanisms. Polymer, 2005, 46, 7352-7369.	1.8	114
107	The determination of the mode II adhesive fracture resistance, GIIC, of structural adhesive joints: an effective crack length approach. Engineering Fracture Mechanics, 2005, 72, 877-897.	2.0	165
108	The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. Journal of Materials Science, 2005, 40, 5083-5086.	1.7	263

#	Article	IF	CITATIONS
109	Identification of citrullinated alpha-enolase as a candidate autoantigen in rheumatoid arthritis. Arthritis Research and Therapy, 2005, 7, R1421.	1.6	304
110	Title is missing!. Arthritis Research, 2005, 7, P20.	2.0	2
111	CRACK GROWTH OF STRUCTURAL ADHESIVE JOINTS IN HUMID ENVIRONMENTS. Journal of Adhesion, 2004, 80, 169-201.	1.8	26
112	Title is missing!. International Journal of Fracture, 2003, 119, 25-46.	1.1	233
113	Mechanical and fracture properties of epoxy/inorganic micro- and nano-composites. Journal of Materials Science Letters, 2003, 22, 1439-1441.	0.5	102
114	The toughening of cyanate-ester polymers: Part II Chemical modification. Journal of Materials Science, 2003, 38, 65-79.	1.7	32
115	Toughness of syndiotactic polystyrene (sPS)/epoxy blends. Journal of Materials Science Letters, 2003, 22, 507-512.	0.5	7
116	The calculation of adhesive fracture energies in mode I: revisiting the tapered double cantilever beam (TDCB) test. Engineering Fracture Mechanics, 2003, 70, 233-248.	2.0	126
117	The prediction of crack growth in bonded joints under cyclic-fatigue loading I. Experimental studies. International Journal of Adhesion and Adhesives, 2003, 23, 449-461.	1.4	70
118	The prediction of crack growth in bonded joints under cyclic-fatigue loading II. Analytical and finite element studies. International Journal of Adhesion and Adhesives, 2003, 23, 463-471.	1.4	41
119	The prediction of fatigue damage growth in impact-damaged composite skin/stringer structures. Part I: theoretical modelling studies. Composites Science and Technology, 2003, 63, 1463-1472.	3.8	9
120	Measuring the mode I adhesive fracture energy, GIC, of structural adhesive joints: the results of an international Journal of Adhesion and Adhesives, 2003, 23, 293-305.	1.4	156
121	Toughening structural adhesives via nano- and micro-phase inclusions. Journal of Adhesion, 2003, 79, 867-873.	1.8	198
122	Toughening Epoxy Adhesives to Meet Today's Challenges. MRS Bulletin, 2003, 28, 445-448.	1.7	170
123	Cohesive zone models and the plastically deforming peel test. Journal of Adhesion, 2003, 79, 239-265.	1.8	99
124	Comparison of normal and oblique incidence ultrasonic measurements for the detection of environmental degradation of adhesive joints. NDT and E International, 2002, 35, 241-253.	1.7	19
125	The mechanical performance of repaired stiffened panels. Part I. Experimental characterisation. Composites Part B: Engineering, 2002, 33, 343-354.	5.9	15
126	The mechanical performance of repaired stiffened panels. Part II. Finite element modelling. Composites Part B: Engineering, 2002, 33, 355-366.	5.9	12

#	Article	IF	CITATIONS
127	Title is missing!. Journal of Materials Science, 2002, 37, 433-460.	1.7	94
128	The Correlation of Non-Destructive Measurements and Toughness Changes in Adhesive Joints during Environmental Attack. Journal of Adhesion, 2001, 77, 125-161.	1.8	43
129	Modelling the fatigue life of polymer–matrix fibre-composite components. Composites Science and Technology, 2001, 61, 2273-2283.	3.8	8
130	Title is missing!. Journal of Materials Science Letters, 2001, 20, 265-267.	0.5	15
131	The role of the interphase in the environmental failure of adhesive joints. Acta Materialia, 2000, 48, 4543-4553.	3.8	155
132	The impact wedge-peel performance of structural adhesives. Journal of Materials Science, 2000, 35, 1867-1884.	1.7	71
133	Predicting the service-life of adhesively-bonded joints. International Journal of Fracture, 2000, 103, 41-69.	1.1	115
134	Mechanical performance of carbon-fibre- and glass-fibre-reinforced epoxy I-beams: III. fatigue performance. Composites Science and Technology, 1999, 59, 179-200.	3.8	9
135	Cantonese Speakers and the Acquisition of French Consonants. Language Learning, 1999, 49, 95-121.	1.4	4
136	Further comments on "Determining the toughness of plastically deforming joints― Journal of Materials Science Letters, 1999, 18, 2049-2049.	0.5	3
137	Determination of density and elastic constants of a thin phosphoric acid-anodized oxide film by acoustic microscopy. Journal of the Acoustical Society of America, 1999, 106, 2560-2567.	0.5	25
138	Predicting Progressive Delamination of Composite Material Specimens via Interface Elements. Mechanics of Advanced Materials and Structures, 1999, 6, 301-317.	1.5	144
139	Comments on "Determining the Toughness of Plastically Deforming Joints― Journal of Materials Science Letters, 1998, 17, 813-814.	0.5	9
140	Adhesively-bonded repairs to fibre-composite materials I. Experimental. Composites Part A: Applied Science and Manufacturing, 1998, 29, 1371-1381.	3.8	72
141	Adhesively-bonded repairs to fibre-composite materials II. Finite element modelling. Composites Part A: Applied Science and Manufacturing, 1998, 29, 1383-1396.	3.8	53
142	The Computational Molecular Modelling of Organosilane Primers. Journal of Adhesion, 1998, 66, 203-228.	1.8	18
143	The Fatigue and Durability Behaviour of Automotive Adhesives. Part II: Failure Mechanisms. Journal of Adhesion, 1998, 66, 1-37.	1.8	33
144	The Fatigue and Durability Behaviour of Automotive Adhesives. Part III: Predicting the Service Life. Journal of Adhesion, 1998, 66, 39-59.	1.8	43

#	Article	IF	CITATIONS
145	Anomalous behaviour of leaky surface waves for stiffening layer near cutoff. Journal of Applied Physics, 1997, 82, 1031-1035.	1.1	25
146	Adhesives in engineering. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1997, 211, 307-335.	0.7	82
147	The Fatigue and Durability Behaviour of Automotive Adhesives. Part I: Fracture Mechanics Tests. Journal of Adhesion, 1997, 61, 71-95.	1.8	89
148	The effect of the substrate material on the value of the adhesive fracture energy, G c. Journal of Materials Science Letters, 1997, 16, 1450-1453.	0.5	23
149	A fracture mechanics study of the influence of moisture on the fatigue behaviour of adhesively bonded aluminium-alloy joints. International Journal of Adhesion and Adhesives, 1996, 16, 113-119.	1.4	53
150	Mechanical performance of carbon-fibre- and glass-fibre-reinforced epoxy I-beams: I. Mechanical behaviour. Composites Science and Technology, 1996, 56, 37-53.	3.8	36
151	Mechanical performance of carbon-fibre and glass-fibre-reinforced epoxy I-beams: II. Fractographic failure observations. Composites Science and Technology, 1996, 56, 1031-1045.	3.8	25
152	The failure of fibre composites and adhesively bonded fibre composites under high rates of test. Journal of Materials Science, 1996, 31, 4451-4466.	1.7	57
153	The failure of fibre composites and adhesively bonded fibre composites under high rates of test. Journal of Materials Science, 1996, 31, 4467-4477.	1.7	69
154	Comments on mixed-mode fracture in adhesive joints. International Journal of Fracture, 1996, 75, 157-162.	1.1	17
155	Modelling the Fracture Behaviour of Adhesive Joints. Journal of Adhesion, 1996, 59, 217-224.	1.8	9
156	Predictive Modeling of the Properties and Toughness of Rubber-Toughened Epoxies. Advances in Chemistry Series, 1996, , 1-25.	0.6	22
157	The failure of fibre composites and adhesively bonded fibre composites under high rates of test. Journal of Materials Science, 1995, 30, 5885-5900.	1.7	131
158	Quantitative acoustic microscopy of anodized and coated aluminium at frequencies up to 1 GHz. Journal of Materials Science, 1995, 30, 3752-3760.	1.7	11
159	Subcritical interlaminar crack growth in fibre composites exhibiting a risingR-curve. Journal of Materials Science, 1995, 30, 2305-2312.	1.7	2
160	A new test method for determining the adhesive fracture energy when bonding thin or coated substrates. Journal of Materials Science Letters, 1995, 14, 155-157.	0.5	12
161	Modelling the properties of rubber-modified epoxy polymers. Journal of Materials Science, 1995, 30, 1689-1697.	1.7	65
162	Investigation of the Interaction of Silane-based Adhesive Primers with Metal Oxide Surfaces Using Molecular Dynamics Simulations. Journal of Adhesion, 1995, 54, 23-31.	1.8	7

#	Article	IF	CITATIONS
163	Thermoplastic-toughened epoxy polymers. Journal of Materials Science, 1994, 29, 3781-3790.	1.7	193
164	Predictive modelling of the mechanical properties of rubber-toughened epoxy. Journal of Materials Science Letters, 1994, 13, 629-632.	0.5	22
165	The peeling of flexible laminates. International Journal of Fracture, 1994, 66, 45-70.	1.1	375
166	The bonded repair of fibre composites: Effect com of composite moisture content. Composites Science and Technology, 1994, 52, 235-246.	3.8	12
167	The interlaminar failure behaviour of carbon fibre/polyetheretherketone composites. Composites, 1994, 25, 189-196.	0.9	9
168	The plasma treatment of thermoplastic fibre composites for adhesive bonding. Composites, 1994, 25, 332-341.	0.9	55
169	The mixed-mode delamination of fibre composite materials. Composites Science and Technology, 1993, 47, 225-237.	3.8	173
170	The use of the "inverted-blister test―to measure the adhesion of an electrocoated paint layer adhering to a steel substrate. Journal of Materials Science Letters, 1993, 12, 875-877.	0.5	10
171	Subcritical interlaminar crack growth in continuous carbon fibre-poly(ether ether ketone) composites. Journal of Materials Science Letters, 1993, 12, 1815-1817.	0.5	1
172	Cantonese Speakers and the Acquisition of French Consonants. Language Learning, 1993, 43, 43-68.	1.4	6
173	The Use of Time-Temperature Superpositioning in Studying the Fracture Properties of Rubber-Toughened Epoxy Polymers. Journal of Adhesion, 1993, 41, 5-22.	1.8	22
174	Mechanisms of Toughening Thermoset Resins. Advances in Chemistry Series, 1993, , 1-35.	0.6	45
175	Predicting the Fatigue Life of Adhesively-Bonded Joints. Journal of Adhesion, 1993, 43, 79-90.	1.8	100
176	The Strength of Composite Repair Patches: A Laminate Analysis Approach. Journal of Reinforced Plastics and Composites, 1992, 11, 729-742.	1.6	24
177	The Design of Double-Overlap Joints Using Thermoplastic-Fibre Composites. Journal of Adhesion, 1992, 37, 33-45.	1.8	3
178	The adhesion of thermoplastic fibre composites. Philosophical Transactions of the Royal Society: Physical and Engineering Sciences, 1992, 338, 83-112.	1.0	31
179	Modelling of the toughening mechanisms in rubber-modified epoxy polymers. Journal of Materials Science, 1992, 27, 2753-2762.	1.7	189
180	Modelling of the toughening mechanisms in rubber-modified epoxy polymers. Journal of Materials Science, 1992, 27, 2763-2769.	1.7	198

#	Article	IF	CITATIONS
181	The role of plastic void growth in the fracture of rubber-toughened epoxy polymers. Journal of Materials Science Letters, 1992, 11, 484-487.	0.5	81
182	The sequence of initiation of the toughening micromechanisms in rubber-modified epoxy polymers. Polymer, 1992, 33, 5338-5340.	1.8	38
183	Round-robin interlaminar fracture testing of carbon-fibre-reinforced epoxy and PEEK composites. Composites Science and Technology, 1992, 43, 129-136.	3.8	90
184	Self-assembling monolayer silane films as adhesion promoters. Polymer, 1992, 33, 1162-1170.	1.8	38
185	The toughness of epoxy polymers containing microvoids. Polymer, 1992, 33, 1330-1332.	1.8	87
186	On the Calculation of Dispersion and Polar Force Components of the Surface Free Energy. Journal of Adhesion, 1991, 34, 41-44.	1.8	11
187	Measuring and predicting the durability of bonded carbon fibre/epoxy composite joints. Composites, 1991, 22, 121-127.	0.9	51
188	Fracture at bimaterial interfaces: the role of residual stresses. Journal of Materials Science, 1991, 26, 6260-6270.	1.7	31
189	Interfacial interactions of octadecyltrichlorosilane adsorbed onto aluminium substrates. Surface and Interface Analysis, 1991, 17, 120-121.	0.8	5
190	Relationships between the surface free energies and surface chemical compositions of thermoplastic fibre composites and adhesive joint strengths. Journal of Materials Science Letters, 1991, 10, 815-818.	0.5	28
191	The calculation of adhesive fracture energies from double-cantilever beam test specimens. Journal of Materials Science Letters, 1991, 10, 253-256.	0.5	94
192	The Effect of the Silane Deposition Conditions on the Durability of Aluminium Joints Pretreated using 3-Aminopropyltrimethoxysilane. Journal of Adhesion, 1991, 34, 175-187.	1.8	10
193	The Fracture Behaviour of a Rubber-Modified Epoxy Under Impact Fatigue. Journal of Adhesion, 1990, 32, 245-254.	1.8	11
194	Mechanics and mechanisms of delamination in a poly(ether sulphone)—Fibre composite. Composites Science and Technology, 1990, 37, 429-462.	3.8	138
195	An examination of the interaction of silanes containing carbonî—,carbon double bonds with aluminium oxide by inelastic electron tunnelling spectroscopy. International Journal of Adhesion and Adhesives, 1990, 10, 13-18.	1.4	7
196	The effect of humidity on the durability of aluminium-epoxide joints. International Journal of Adhesion and Adhesives, 1990, 10, 247-253.	1.4	71
197	Use of the â€~inverted-blister' test to study the adhesion of photopolymers. International Journal of Adhesion and Adhesives, 1990, 10, 69-76.	1.4	30
198	The Effects of Geometry, Rate and Temperature on the Mode I, Mode II and Mixed-Mode I/II Interlaminar Fracture of Carbon-Fibre/Poly(ether-ether ketone) Composites. Journal of Composite Materials, 1990, 24, 918-956.	1.2	207

#	Article	IF	CITATIONS
199	Characterization of the structure of Langmuir-Blodgett films of 22-tricosenoic acid using x-ray photoelectron spectroscopy. Langmuir, 1990, 6, 529-535.	1.6	20
200	The analysis of interlaminar fracture in uniaxial fibre-polymer composites. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1990, 427, 173-199.	1.5	275
201	The Adhesive Fracture Energy of Bonded Thermoplastic Fibre-Composites. Journal of Adhesion, 1989, 29, 193-218.	1.8	27
202	Inelastic Electron Tunneling Spectroscopy of Some Aminosilane Coupling Agents. Journal of Adhesion, 1989, 28, 171-190.	1.8	9
203	Comments on "Fatigue Performance of Two Structural Adhesives―[J. Adhesion26, 273-291 (1988)]. Journal of Adhesion, 1989, 30, 83-84.	1.8	1
204	Micromechanics of Fracture in Structural Adhesive Bonds. Journal of Adhesion, 1989, 28, 103-114.	1.8	57
205	Examination of the interaction of 3-glycidoxypropyltrimethoxysilane with aluminium oxide by inelastic electron tunnelling spectroscopy. International Journal of Adhesion and Adhesives, 1989, 9, 201-204.	1.4	9
206	The mechanical behaviour of polyimide-copper laminates. Journal of Materials Science, 1989, 24, 2183-2190.	1.7	13
207	The fracture of a rubber-modified epoxy polymer containing through-thickness and surface cracks. International Journal of Adhesion and Adhesives, 1989, 9, 69-76.	1.4	9
208	Corrections needed in double-cantilever beam tests for assessing the interlaminar failure of fibre-composites. Journal of Materials Science Letters, 1989, 8, 125-129.	0.5	194
209	The Mechanical Behaviour of Polyimide/Copper Laminates Part 2: Peel Energy Measurements. Journal of Adhesion, 1989, 30, 151-170.	1.8	11
210	Surface pretreatment and adhesion of thermoplastic fibre-composites. Journal of Materials Science Letters, 1988, 7, 625-627.	0.5	65
211	The Impact Resistance of Structural Adhesive Joints. Journal of Adhesion, 1987, 24, 109-126.	1.8	26
212	The Adhesive Bonding of Thermoplastic Cornposites. Journal of Adhesion, 1987, 21, 291-302.	1.8	34
213	Impact behaviour of structural adhesive joints. Journal of Materials Science Letters, 1987, 6, 653-655.	0.5	5
214	Effect of volume fraction of dispersed rubbery phase on the toughness of rubber-toughened epoxy polymers. Journal of Materials Science Letters, 1987, 6, 137-139.	0.5	58
215	Impact properties of epoxy polymers. Journal of Materials Science, 1987, 22, 4111-4120.	1.7	42
216	Stress Analysis and Failure Properties of Carbon-Fibre-Reinforced-Plastic/Steel Double-Lap Joints. Journal of Adhesion, 1986, 20, 29-53.	1.8	178

#	Article	IF	CITATIONS
217	The deformation of hybrid-particulate composites. Journal of Materials Science, 1986, 21, 380-388.	1.7	41
218	A mechanism for ductile crack growth in epoxy polymers. Journal of Materials Science, 1986, 21, 1051-1056.	1.7	39
219	Effect of volume fraction of dispersed rubbery phase on the toughness of rubber-toughened epoxy polymers. Journal of Materials Science Letters, 1986, 5, 1207-1209.	0.5	21
220	The fracture of hybrid-particulate composites. Journal of Materials Science, 1985, 20, 4169-4184.	1.7	211
221	Micromechanisms of crack propagation in hybrid-particulate composites. Journal of Materials Science Letters, 1985, 4, 1276-1279.	0.5	64
222	Dictionary of Newfoundland English. Ed. by C. M. Story, W. J. Kirwin, and J. D. A. Widdowson. Toronto: University of Toronto Press, 1982 (repr. 1982, 1983). lxxviii + 625. Journal of English Linguistics, 1984, 17, 84-90.	0.3	0
223	The Locus of Environmental Crack Growth in Bonded Aluminium Alloy Joints. Journal of Adhesion, 1984, 16, 165-177.	1.8	28
224	Inelastic electron tunnelling spectroscopy of silane coupling agents. Surface and Interface Analysis, 1984, 6, 40-45.	0.8	34
225	Hybrid particulate-filled epoxy-polymers. Journal of Materials Science Letters, 1984, 3, 9-12.	0.5	75
226	Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies. Polymer, 1983, 24, 1341-1354.	1.8	743
227	Deformation and fracture behaviour of a rubber-toughened epoxy: 2. Failure criteria. Polymer, 1983, 24, 1355-1363.	1.8	318
228	English in Newfoundland. American Speech, 1983, 58, 186.	0.3	0
229	The Phonology of Central/Prairie Canadian English. American Speech, 1983, 58, 31.	0.3	8
230	Surface Analysis and Bonding of Aluminium-Magnesium Alloys. Journal of Adhesion, 1982, 14, 105-118.	1.8	40
231	The science of adhesion. Journal of Materials Science, 1982, 17, 617-651.	1.7	168
232	Bonding and Failure Mechanisms in Aluminium Alloy Adhesive Joints. Journal of Adhesion, 1981, 12, 23-35.	1.8	34
233	Propellant Failure: A Fracture-Mechanics Approach. Journal of Spacecraft and Rockets, 1981, 18, 333-337.	1.3	15
234	A First History of Canadian English. American Speech, 1980, 55, 119.	0.3	0

#	Article	IF	CITATIONS
235	Crack blunting mechanisms in polymers. Journal of Materials Science, 1980, 15, 987-996.	1.7	243
236	The science of adhesion. Journal of Materials Science, 1980, 15, 2141-2166.	1.7	432
237	Bibliography as an Art. American Speech, 1980, 55, 214.	0.3	0
238	A Model for Predicting Joint Durability. Journal of Adhesion, 1980, 11, 3-15.	1.8	99
239	Some Nondenominational-Christian Words. American Speech, 1979, 54, 68.	0.3	Ο
240	A self-toughening mechanism in epoxide resins. Journal of Materials Science, 1979, 14, 1769-1772.	1.7	37
241	Mechanics of crack growth in epoxide resins. Polymer Engineering and Science, 1979, 19, 82-88.	1.5	44
242	A Unique Failure Criterion for Characterizing the Fracture of Propellants. Propellants, Explosives, Pyrotechnics, 1979, 4, 73-77.	1.0	12
243	Interfacial Fracture Mechanical Aspects of Adhesive Bonded Joints—A Review. Journal of Adhesion, 1979, 10, 193-219.	1.8	142
244	Relationship between mechanical properties of and crack progogation in epoxy resin adhesives. Polymer, 1978, 19, 574-582.	1.8	134
245	Effect of Relative Humidity on the Wettability of Steel Surfaces. Journal of Adhesion, 1977, 9, 81-85.	1.8	30
246	Use of auger and x-ray photoelectron spectroscopy to study the locus of failure of structural adhesive joints. Journal of Applied Polymer Science, 1977, 21, 2375-2392.	1.3	67
247	Surface analysis of polysiloxane/metal oxide interfaces. Journal of Materials Science, 1977, 12, 2511-2518.	1.7	180
248	Failure criterion for the fracture of structural adhesive joints. Polymer, 1976, 17, 727-731.	1.8	41
249	The Names of the Game: Baseball. American Speech, 1975, 50, 325.	0.3	Ο
250	Crack growth in epoxide resin adhesives. Journal of Materials Science, 1975, 10, 1261-1263.	1.7	26
251	Non-destructive testing of bonded joints. Non-destructive Testing, 1974, 7, 324-326.	0.1	13
252	Environmental Failure of Structural Adhesive Joints. Journal of Adhesion, 1974, 6, 315-330.	1.8	215

#	Article	IF	CITATIONS
253	Mechanics of adhesive failure. I. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1973, 332, 385-399.	1.5	284
254	Mechanics of adhesive failure. II. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1973, 332, 401-414.	1.5	113
255	Elastomeric adhesives: Effect of cross link density on joint strength. Journal of Polymer Science Part A-2 Polymer Physics, 1973, 11, 269-273.	0.8	11
256	Adhesion of viscoelastic materials to rigid substrates. III. Energy criterion for failure. Journal of Polymer Science Part A-2 Polymer Physics, 1971, 9, 659-668.	0.8	112