Dmitry Sukhomlinov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6583810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal Analysis and Optimization of the Phase Diagram of the Cu-Ag Sulfide System. Energies, 2022, 15, 593.	1.6	1
2	Phase equilibria in TiO2-rich part of the MgO–CaO–TiO2 system at 1500–1600°C. Ceramics International, 2022, 48, 20116-20125.	2.3	5
3	Distribution of Co, Fe, Ni, and precious metals between blister copper and white metal. Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy, 2021, 130, 313-323.	0.1	1
4	Slag–Copper Equilibria of Selected Trace Elements in Black Copper Smelting. Part I. Properties of the Slag and Chromium Solubility. Mineral Processing and Extractive Metallurgy Review, 2020, 41, 32-40.	2.6	14
5	Slag-Copper Equilibria of Selected Trace Elements in Black-Copper Smelting. Part II. Trace Element Distributions. Mineral Processing and Extractive Metallurgy Review, 2020, 41, 171-177.	2.6	15
6	Recovery of Precious Metals (Au, Ag, Pt, and Pd) from Urban Mining Through Copper Smelting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1495-1508.	1.0	28
7	Recycling of tellurium via copper smelting processes. SN Applied Sciences, 2020, 2, 1.	1.5	10
8	Trace element distributions between matte and slag in direct nickel matte smelting. Canadian Metallurgical Quarterly, 2020, 59, 67-77.	0.4	4
9	Pre-reduction Behaviour of Manganese Ores in H ₂ and CO Containing Gases. ISIJ International, 2020, 60, 2325-2331.	0.6	10
10	High-Temperature Oxidation of Bismuth- and Antimony-Based Sulfosalts. Mineral Processing and Extractive Metallurgy Review, 2019, 40, 67-78.	2.6	3
11	Behavior of Ga, In, Sn, and Te in Copper Matte Smelting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 2723-2732.	1.0	24
12	Impact of MgO and K2O on Slag-Nickel Matte Equilibria. Journal of Phase Equilibria and Diffusion, 2019, 40, 768-778.	0.5	3
13	Slag Cleaning Equilibria in Iron Silicate Slag–Copper Systems. Journal of Sustainable Metallurgy, 2019, 5, 463-473.	1.1	11
14	Distribution of Ni, Co, Precious, and Platinum Group Metals in Copper Making Process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 1752-1765.	1.0	24
15	Thermodynamic stability of solid phases in the system Cu–O–Al2O3 by means of the EMF and DSC-TGA techniques. Journal of Solid State Electrochemistry, 2018, 22, 959-972.	1.2	4
16	Behavior of Co, Ni and Precious Metals in Copper Converting Process: Experimental Study. Minerals, Metals and Materials Series, 2018, , 217-224.	0.3	2
17	Thermal stabilities and properties of equilibrium phases in the Pt-Te-O system. Journal of Chemical Thermodynamics, 2017, 106, 47-58.	1.0	8
18	Thermodynamic properties of intermetallic PtTe determined by means of a solid electrolyte EMF method. Journal of Chemical Thermodynamics, 2016, 93, 19-23.	1.0	1

#	Article	IF	CITATIONS
19	Thermodynamic stability of Ca3TeO6 determined by a solid electrolyte EMF method. Thermochimica Acta, 2015, 615, 38-42.	1.2	0
20	Standard thermodynamic properties of Bi2O3 by a solid-oxide electrolyte EMF technique. Journal of Chemical Thermodynamics, 2014, 75, 8-12.	1.0	8
21	Thermodynamic study of MgO–Sb2O3 system and the stability functions of magnesium antimonite. Journal of Chemical Thermodynamics, 2014, 72, 71-76.	1.0	5
22	Determination of standard thermodynamic properties of Sb 2 O 3 by a solid-oxide electrolyte EMF technique. Solid State Ionics, 2014, 265, 80-84.	1.3	9
23	Standard Gibbs energy of formation of tellurium dioxide measurement by a solid-oxide electrolyte EMF technique. Thermochimica Acta, 2013, 573, 95-100.	1.2	12