Anirban Bhunia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6583718/publications.pdf

Version: 2024-02-01

		101384	138251
134	4,337	36	58
papers	citations	h-index	g-index
1.40	1.40	1.40	F.C.1.7
140	140	140	5617
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde. Biochemical Pharmacology, 2007, 74, 831-840.	2.0	213
2	Berberine Targets Assembly of Escherichia coli Cell Division Protein FtsZ. Biochemistry, 2008, 47, 3225-3234.	1.2	209
3	Horseradish peroxidase catalyzed degradation of industrially important dyes. Biotechnology and Bioengineering, 2001, 72, 562-567.	1.7	184
4	Reduced Lipid Bilayer Thickness Regulates the Aggregation and Cytotoxicity of Amyloid- \hat{l}^2 . Journal of Biological Chemistry, 2017, 292, 4638-4650.	1.6	145
5	Applications of saturation transfer difference NMR in biological systems. Drug Discovery Today, 2012, 17, 505-513.	3. 2	126
6	NMR Structure of Pardaxin, a Pore-forming Antimicrobial Peptide, in Lipopolysaccharide Micelles. Journal of Biological Chemistry, 2010, 285, 3883-3895.	1.6	123
7	Structure, Interactions, and Antibacterial Activities of MSI-594 Derived Mutant Peptide MSI-594F5A in Lipopolysaccharide Micelles: Role of the Helical Hairpin Conformation in Outer-Membrane Permeabilization. Journal of the American Chemical Society, 2010, 132, 18417-18428.	6.6	104
8	Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle. Journal of Colloid and Interface Science, 2016, 483, 385-393.	5.0	97
9	Designed \hat{l}^2 -Boomerang Antiendotoxic and Antimicrobial Peptides. Journal of Biological Chemistry, 2009, 284, 21991-22004.	1.6	94
10	Helical Hairpin Structure of a Potent Antimicrobial Peptide MSIâ€594 in Lipopolysaccharide Micelles by NMR Spectroscopy. Chemistry - A European Journal, 2009, 15, 2036-2040.	1.7	89
11	NMR Structures and Interactions of Temporin-1Tl and Temporin-1Tb with Lipopolysaccharide Micelles. Journal of Biological Chemistry, 2011, 286, 24394-24406.	1.6	84
12	A Peptide-Nanoparticle System with Improved Efficacy against Multidrug Resistant Bacteria. Scientific Reports, 2019, 9, 4485.	1.6	80
13	Indolicidin Targets Duplex DNA: Structural and Mechanistic Insight through a Combination of Spectroscopy and Microscopy. ChemMedChem, 2014, 9, 2052-2058.	1.6	75
14	Lipopolysaccharide from Gut Microbiota Modulates \hat{l} ±-Synuclein Aggregation and Alters Its Biological Function. ACS Chemical Neuroscience, 2019, 10, 2229-2236.	1.7	73
15	Antimicrobial Peptides: Insights into Membrane Permeabilization, Lipopolysaccharide Fragmentation and Application in Plant Disease Control. Scientific Reports, 2015, 5, 11951.	1.6	70
16	Amyloid-β adopts a conserved, partially folded structure upon binding to zwitterionic lipid bilayers prior to amyloid formation. Chemical Communications, 2016, 52, 882-885.	2.2	66
17	Use of a Small Peptide Fragment as an Inhibitor of Insulin Fibrillation Process: A Study by High and Low Resolution Spectroscopy. PLoS ONE, 2013, 8, e72318.	1.1	64
18	Influence of a curcumin derivative on hIAPP aggregation in the absence and presence of lipid membranes. Chemical Communications, 2016, 52, 942-945.	2.2	63

#	Article	IF	Citations
19	Inhibition of Insulin Amyloid Fibrillation by a Novel Amphipathic Heptapeptide. Journal of Biological Chemistry, 2016, 291, 23545-23556.	1.6	62
20	Multivalent gold nanoparticle–peptide conjugates for targeting intracellular bacterial infections. Nanoscale, 2017, 9, 14074-14093.	2.8	60
21	Chelerythrine and Sanguinarine Dock at Distinct Sites on BclXL that are Not the Classic BH3 Binding Cleft. Journal of Molecular Biology, 2006, 364, 536-549.	2.0	58
22	Structural and thermodynamic analyses of the interaction between melittin and lipopolysaccharide. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 3282-3291.	1.4	58
23	Lipopolysaccharide bound structures of the active fragments of fowlicidinâ€1, a cathelicidin family of antimicrobial and antiendotoxic peptide from chicken, determined by transferred nuclear overhauser effect spectroscopy. Biopolymers, 2009, 92, 9-22.	1.2	56
24	Detergent-Type Membrane Fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 Antimicrobial Peptides and Inhibition by Cholesterol: A Solid-State Nuclear Magnetic Resonance Study. Biochemistry, 2015, 54, 1897-1907.	1,2	55
25	Self-Assembly of a Nine-Residue Amyloid-Forming Peptide Fragment of SARS Corona Virus E-Protein: Mechanism of Self Aggregation and Amyloid-Inhibition of hIAPP. Biochemistry, 2015, 54, 2249-2261.	1.2	50
26	High-Resolution Solution Structure of a Designed Peptide Bound to Lipopolysaccharide:  Transferred Nuclear Overhauser Effects, Micelle Selectivity, and Anti-Endotoxic Activity, Biochemistry, 2007, 46, 5864-5874.	1.2	49
27	Role of Aromatic Amino Acids in Lipopolysaccharide and Membrane Interactions of Antimicrobial Peptides for Use in Plant Disease Control. Journal of Biological Chemistry, 2016, 291, 13301-13317.	1.6	46
28	Accelerated molecular dynamics simulation analysis of MSI-594 in a lipid bilayer. Physical Chemistry Chemical Physics, 2017, 19, 19289-19299.	1.3	46
29	Probing transient non-native states in amyloid beta fiber elongation by NMR. Chemical Communications, 2019, 55, 4483-4486.	2.2	46
30	Reactivity of Metal-Free and Metal-Associated Amyloid- \hat{l}^2 with Glycosylated Polyphenols and Their Esterified Derivatives. Scientific Reports, 2015, 5, 17842.	1.6	44
31	Membrane disruptive antimicrobial activities of human \hat{l}^2 -defensin-3 analogs. European Journal of Medicinal Chemistry, 2015, 91, 91-99.	2.6	44
32	Inhibition and Degradation of Amyloid Beta ($A\hat{l}^240$) Fibrillation by Designed Small Peptide: A Combined Spectroscopy, Microscopy, and Cell Toxicity Study. ACS Chemical Neuroscience, 2017, 8, 718-722.	1.7	44
33	Designing potent antimicrobial peptides by disulphide linked dimerization and N-terminal lipidation to increase antimicrobial activity and membrane perturbation: Structural insights into lipopolysaccharide binding. Journal of Colloid and Interface Science, 2016, 461, 335-345.	5.0	41
34	Host-membrane interacting interface of the SARS coronavirus envelope protein: Immense functional potential of C-terminal domain. Biophysical Chemistry, 2020, 266, 106452.	1.5	41
35	Application of tungsten disulfide quantum dot-conjugated antimicrobial peptides in bio-imaging and antimicrobial therapy. Colloids and Surfaces B: Biointerfaces, 2019, 176, 360-370.	2.5	40
36	Antimicrobial Peptides and their Pore/Ion Channel Properties in Neutralization of Pathogenic Microbes. Current Topics in Medicinal Chemistry, 2015, 16, 46-53.	1.0	39

3

#	Article	IF	CITATIONS
37	Saturation transfer difference NMR and computational modeling of a sialoadhesin–sialyl lactose complex. Carbohydrate Research, 2004, 339, 259-267.	1.1	37
38	Mode of Action of a Designed Antimicrobial Peptide: High Potency against Cryptococcus neoformans. Biophysical Journal, 2016, 111, 1724-1737.	0.2	37
39	Evidence for Inhibition of Lysozyme Amyloid Fibrillization by Peptide Fragments from Human Lysozyme: A Combined Spectroscopy, Microscopy, and Docking Study. Biomacromolecules, 2016, 17, 1998-2009.	2.6	35
40	Multitude NMR studies of \hat{l}_{\pm} -synuclein familial mutants: probing their differential aggregation propensities. Chemical Communications, 2018, 54, 3605-3608.	2.2	33
41	Why Structurally Different Cyclic Peptides Can Be Glycomimetics of the HNK-1 Carbohydrate Antigen. Journal of the American Chemical Society, 2010, 132, 96-105.	6.6	32
42	NMR Solution Conformations and Interactions of Integrin $\hat{l}\pm L\hat{l}^22$ Cytoplasmic Tails. Journal of Biological Chemistry, 2009, 284, 3873-3884.	1.6	31
43	Micelle-bound structures and dynamics of the hinge deleted analog of melittin and its diastereomer: Implications in cell selective lysis by d-amino acid containing antimicrobial peptides. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 128-139.	1.4	31
44	Enhanced Silkworm Cecropin B Antimicrobial Activity against <i>Pseudomonas aeruginosa</i> from Single Amino Acid Variation. ACS Infectious Diseases, 2019, 5, 1200-1213.	1.8	31
45	NMR Structure of Temporin-1 Ta in Lipopolysaccharide Micelles: Mechanistic Insight into Inactivation by Outer Membrane. PLoS ONE, 2013, 8, e72718.	1.1	31
46	Sequence context induced antimicrobial activity: insight into lipopolysaccharide permeabilization. Molecular BioSystems, 2014, 10, 1596-1612.	2.9	30
47	Mapping residue-specific contacts of polymyxin B with lipopolysaccharide by saturation transfer difference NMR: Insights into outer-membrane disruption and endotoxin neutralization. Biopolymers, 2011, 96, 273-287.	1.2	29
48	Lysozyme's lectin-like characteristics facilitates its immune defense function. Quarterly Reviews of Biophysics, 2017, 50, e9.	2.4	29
49	Membrane perturbing activities and structural properties of the frog-skin derived peptide Esculentin-1a(1-21)NH2 and its Diastereomer Esc(1-21)-1c: Correlation with their antipseudomonal and cytotoxic activity. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2327-2339.	1.4	27
50	Acetylation of Gly1 and Lys2 Promotes Aggregation of Human \hat{I}^3D -Crystallin. Biochemistry, 2014, 53, 7269-7282.	1.2	26
51	Microgels as carriers of antimicrobial peptides – Effects of peptide PEGylation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 565, 8-15.	2.3	26
52	Inhibition behavior of Sennoside A and Sennoside C on amyloid fibrillation of human lysozyme and its possible mechanism. International Journal of Biological Macromolecules, 2021, 178, 424-433.	3.6	26
53	Human cathelicidin peptide LL37 binds telomeric G-quadruplex. Molecular BioSystems, 2013, 9, 1833.	2.9	25
54	Investigating the inhibitory effects of entacapone on amyloid fibril formation of human lysozyme. International Journal of Biological Macromolecules, 2020, 161, 1393-1404.	3.6	25

#	Article	IF	CITATIONS
55	NMR structural studies of the Ste11 SAM domain in the dodecyl phosphocholine micelle. Proteins: Structure, Function and Bioinformatics, 2009, 74, 328-343.	1.5	24
56	Structural Elucidation of the Cell-Penetrating Penetratin Peptide in Model Membranes at the Atomic Level: Probing Hydrophobic Interactions in the Blood–Brain Barrier. Biochemistry, 2016, 55, 4982-4996.	1.2	24
57	Ribavirin suppresses bacterial virulence by targeting LysR-type transcriptional regulators. Scientific Reports, 2016, 6, 39454.	1.6	23
58	Effect of Secondary Structure and Side Chain Length of Hydrophobic Amino Acid Residues on the Antimicrobial Activity and Toxicity of 14â€Residueâ€Long de novo AMPs. ChemMedChem, 2021, 16, 355-367.	1.6	23
59	Interactions of a designed peptide with lipopolysaccharide: Bound conformation and anti-endotoxic activity. Biochemical and Biophysical Research Communications, 2008, 369, 853-857.	1.0	22
60	Probing the role of Proline in the antimicrobial activity and lipopolysaccharide binding of indolicidin. Journal of Colloid and Interface Science, 2015, 452, 148-159.	5.0	22
61	Solution Structures, Dynamics, and Ice Growth Inhibitory Activity of Peptide Fragments Derived from an Antarctic Yeast Protein. PLoS ONE, 2012, 7, e49788.	1.1	21
62	Identification of modes of interactions between 9-aminoacridine hydrochloride hydrate and serum proteins by low and high resolution spectroscopy and molecular modeling. RSC Advances, 2016, 6, 53454-53468.	1.7	21
63	Rationally designed antimicrobial peptides: Insight into the mechanism of eleven residue peptides against microbial infections. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183177.	1.4	21
64	Attenuation of Human Lysozyme Amyloid Fibrillation by ACE Inhibitor Captopril: A Combined Spectroscopy, Microscopy, Cytotoxicity, and Docking Study. Biomacromolecules, 2021, 22, 1910-1920.	2.6	21
65	Consistent Bioactive Conformation of the Neu5Acl±(2â†'3)Gal Epitope Upon Lectin Binding. ChemBioChem, 2008, 9, 2941-2945.	1.3	20
66	Convergent Synthesis and Conformational Analysis of the Hexasaccharide Repeating Unit of the ⟨i⟩O⟨ i⟩â€Antigen of ⟨i⟩Shigella flexneri⟨ i⟩ Serotype 1d. European Journal of Organic Chemistry, 2014, 2014, 4577-4584.	1.2	20
67	Structure and Dynamics of Antifreeze Protein–Model Membrane Interactions: A Combined Spectroscopic and Molecular Dynamics Study. Journal of Physical Chemistry B, 2016, 120, 902-914.	1.2	20
68	Structural insights into the combinatorial effects of antimicrobial peptides reveal a role of aromatic–aromatic interactions in antibacterial synergism. Journal of Biological Chemistry, 2019, 294, 14615-14633.	1.6	20
69	Gut-Brain axis in Parkinson's disease etiology: The role of lipopolysaccharide. Chemistry and Physics of Lipids, 2021, 235, 105029.	1.5	20
70	Insights into the Mechanism of Antimicrobial Activity of Seven-Residue Peptides. Journal of Medicinal Chemistry, 2018, 61, 7614-7629.	2.9	19
71	Comparison of Synthetic Neuronal Model Membrane Mimics in Amyloid Aggregation at Atomic Resolution. ACS Chemical Neuroscience, 2020, 11, 1965-1977.	1.7	18
72	Potent Î ³ -secretase inhibitors/modulators interact with amyloid-Î ² fibrils but do not inhibit fibrillation: A high-resolution NMR study. Biochemical and Biophysical Research Communications, 2014, 447, 590-595.	1.0	17

#	Article	IF	CITATIONS
73	Conformational Aspects of High Content Packing of Antimicrobial Peptides in Polymer Microgels. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40094-40106.	4.0	17
74	Insulin–eukaryotic model membrane interaction: Mechanistic insight of insulin fibrillation and membrane disruption. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1917-1926.	1.4	17
75	Structural insights of a self-assembling 9-residue peptide from the C-terminal tail of the SARS corona virus E-protein in DPC and SDS micelles: A combined high and low resolution spectroscopic study. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 335-346.	1.4	17
76	Combining Antimicrobial Peptides with Nanotechnology: An Emerging Field in Theranostics. Current Protein and Peptide Science, 2020, 21, 413-428.	0.7	17
77	NMR Structure, Localization, and Vesicle Fusion of Chikungunya Virus Fusion Peptide. Biochemistry, 2012, 51, 7863-7872.	1.2	16
78	Deciphering the role of the AT-rich interaction domain and the HMG-box domain of ARID-HMG proteins of Arabidopsis thaliana. Plant Molecular Biology, 2016, 92, 371-388.	2.0	16
79	Biophysical insights into the membrane interaction of the core amyloid-forming $\hat{A^2}$ sub>40fragment K16â \in K28 and its role in the pathogenesis of Alzheimer's disease. Physical Chemistry Chemical Physics, 2016, 18, 16890-16901.	1.3	16
80	NMR structure and binding of esculentin-1a (1–21)NH 2 and its diastereomer to lipopolysaccharide: Correlation with biological functions. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 800-812.	1.4	16
81	Selfâ€Assembly and Neurotoxicity of βâ€Amyloid (21–40) Peptide Fragment: The Regulatory Role of GxxxG Motifs. ChemMedChem, 2020, 15, 293-301.	1.6	16
82	Novel G-quadruplex stabilizing agents: in-silico approach and dynamics. Journal of Biomolecular Structure and Dynamics, 2013, 31, 1497-1518.	2.0	15
83	An Alternative Phosphorylation Switch in Integrin β2 (CD18) Tail for Dok1 Binding. Scientific Reports, 2015, 5, 11630.	1.6	15
84	Biophysical and biochemical aspects of antifreeze proteins: Using computational tools to extract atomistic information. Progress in Biophysics and Molecular Biology, 2015, 119, 194-204.	1.4	15
85	Structural and Dynamic Insights into a Glycine-Mediated Short Analogue of a Designed Peptide in Lipopolysaccharide Micelles: Correlation Between Compact Structure and Anti-Endotoxin Activity. Biochemistry, 2017, 56, 1348-1362.	1.2	15
86	Double GC:GC Mismatch in dsDNA Enhances Local Dynamics Retaining the DNA Footprint: A Highâ∈Resolution NMR Study. ChemMedChem, 2014, 9, 2059-2064.	1.6	14
87	C -cinnamoyl glycosides as a new class of anti-filarial agents. European Journal of Medicinal Chemistry, 2016, 114, 308-317.	2.6	14
88	Interaction of ATP with a Small Heat Shock Protein from Mycobacterium leprae: Effect on Its Structure and Function. PLoS Neglected Tropical Diseases, 2015, 9, e0003661.	1.3	13
89	Tryptophan end-tagging for promoted lipopolysaccharide interactions and anti-inflammatory effects. Scientific Reports, 2017, 7, 212.	1.6	13
90	Role of non-electrostatic forces in antimicrobial potency of a dengue-virus derived fusion peptide VG16KRKP: Mechanistic insight into the interfacial peptide-lipid interactions. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 798-809.	1.4	13

#	Article	IF	CITATIONS
91	Design, Synthesis, Antibacterial Potential, and Structural Characterization of N-Acylated Derivatives of the Human Autophagy 16 Polypeptide. Bioconjugate Chemistry, 2019, 30, 1998-2010.	1.8	13
92	Sequence specificity of amylin-insulin interaction: a fragment-based insulin fibrillation inhibition study. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 405-415.	1.1	13
93	Highâ€resolution structure of a partially folded insulin aggregation intermediate. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1648-1659.	1.5	13
94	An Approach Towards Structure Based Antimicrobial Peptide Design for Use in Development of Transgenic Plants: A Strategy for Plant Disease Management. Current Medicinal Chemistry, 2017, 24, 1350-1364.	1.2	13
95	Will It Be Beneficial To Simulate the Antifreeze Proteins at Ice Freezing Condition or at Lower Temperature?. Journal of Physical Chemistry B, 2015, 119, 11485-11495.	1.2	12
96	Synthesis of novel muramic acid derivatives and their interaction with lysozyme: Action of lysozyme revisited. Journal of Colloid and Interface Science, 2017, 498, 395-404.	5.0	12
97	Targeted inhibition of amyloidogenesis using a non-toxic, serum stable strategically designed cyclic peptide with therapeutic implications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140378.	1.1	12
98	Nonproductive Binding Modes as a Prominent Feature of $\hat{Al^2}$ sub>40 Fiber Elongation: Insights from Molecular Dynamics Simulation. Journal of Chemical Information and Modeling, 2018, 58, 1576-1586.	2.5	11
99	Nanomedical Relevance of the Intermolecular Interaction Dynamics—Examples from Lysozymes and Insulins. ACS Omega, 2019, 4, 4206-4220.	1.6	11
100	Interaction with zinc oxide nanoparticle kinetically traps \hat{l}_{\pm} -synuclein fibrillation into off-pathway non-toxic intermediates. International Journal of Biological Macromolecules, 2020, 150, 68-79.	3.6	11
101	Atomic-Resolution Structures and Mode of Action of Clinically Relevant Antimicrobial Peptides. International Journal of Molecular Sciences, 2022, 23, 4558.	1.8	11
102	7-Methoxytacrine and 2-Aminobenzothiazole Heterodimers: Structure–Mechanism Relationship of Amyloid Inhibitors Based on Rational Design. ACS Chemical Neuroscience, 2020, 11, 715-729.	1.7	10
103	Molecular Details of a Salt Bridge and Its Role in Insulin Fibrillation by NMR and Raman Spectroscopic Analysis. Journal of Physical Chemistry B, 2020, 124, 1125-1136.	1.2	10
104	Structural insights into the interaction of antifungal peptides and ergosterol containing fungal membrane. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183996.	1.4	10
105	Biophysical Characterization of Essential Phosphorylation at the Flexible C-Terminal Region of C-Raf with 14-3-3ζ Protein. PLoS ONE, 2015, 10, e0135976.	1.1	9
106	Deciphering the Role of Ion Channels in Early Defense Signaling against Herbivorous Insects. Cells, 2021, 10, 2219.	1.8	9
107	Equilibrium Unfolding of the Dimeric SAM Domain of MAPKKK Ste11 from the Budding Yeast:  Role of the Interfacial Residues in Structural Stability and Binding. Biochemistry, 2008, 47, 651-659.	1.2	8
108	Structural determinants of the specificity of a membrane binding domain of the scaffold protein Ste5 of budding yeast: Implications in signaling by the scaffold protein in MAPK pathway. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1250-1260.	1.4	8

7

#	Article	IF	Citations
109	Conformational distortion in a fibril-forming oligomer arrests alpha-Synuclein fibrillation and minimizes its toxic effects. Communications Biology, 2021, 4, 518.	2.0	8
110	Effect of PEGylation on Host Defense Peptide Complexation with Bacterial Lipopolysaccharide. Bioconjugate Chemistry, 2021, 32, 1729-1741.	1.8	8
111	Solvent Relaxation NMR: A Tool for Real-Time Monitoring Water Dynamics in Protein Aggregation Landscape. ACS Chemical Neuroscience, 2021, 12, 2903-2916.	1.7	8
112	An explicitly designed paratope of amyloid- \hat{l}^2 prevents neuronal apoptosis <i>in vitro</i> and hippocampal damage in rat brain. Chemical Science, 2021, 12, 2853-2862.	3.7	7
113	Targeting C-terminal Helical bundle of NCOVID19 Envelope (E) protein. International Journal of Biological Macromolecules, 2021, 175, 131-139.	3.6	7
114	Synthesis and antibacterial study of cell-penetrating peptide conjugated trifluoroacetyl and thioacetyl lysine modified peptides. European Journal of Medicinal Chemistry, 2021, 219, 113447.	2.6	7
115	Evidences for zinc (II) and copper (II) ion interactions with Mycobacterium leprae HSP18: Effect on its structure and chaperone function. Journal of Inorganic Biochemistry, 2018, 188, 62-75.	1.5	6
116	NMR Assisted Antimicrobial Peptide Designing: Structure Based Modifications and Functional Correlation of a Designed Peptide VG16KRKP. Current Medicinal Chemistry, 2020, 27, 1387-1404.	1.2	6
117	Expedient synthesis of the pentasaccharide repeating unit of the O-antigen of Escherichia coli O86 and its conformational analysis. Glycoconjugate Journal, 2016, 33, 887-896.	1.4	5
118	Binding Moiety Mapping by Saturation Transfer Difference NMR. Methods in Molecular Biology, 2018, 1824, 49-65.	0.4	5
119	Do Catechins (ECG and EGCG) Bind to the Same Site as Thioflavin T (ThT) in Amyloid Fibril? Answer From Saturation Transfer Difference NMR. Natural Product Communications, 2019, 14, 1934578X1984979.	0.2	5
120	A rationally designed synthetic antimicrobial peptide against Pseudomonas-associated corneal keratitis: Structure-function correlation. Biophysical Chemistry, 2022, 286, 106802.	1.5	5
121	Editorial (Thematic Issue: Antimicrobial Peptides in Medicinal Chemistry: Advances and Applications). Current Topics in Medicinal Chemistry, 2015, 16, 2-3.	1.0	4
122	Mitochondrial-membrane association of α-synuclein: Pros and cons in consequence of Parkinson's disease pathophysiology. Gene Reports, 2019, 16, 100423.	0.4	4
123	Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis : insights into VapB46– DNA binding. FEBS Journal, 2019, 286, 1174-1190.	2.2	4
124	Functional and structural characterization of the talin FOF1 domain. Biochemical and Biophysical Research Communications, 2010, 391, 159-165.	1.0	3
125	Linear synthesis and conformational analysis of the pentasaccharide repeating unit of the cell wall O-antigen of Escherichia coli O13. Carbohydrate Research, 2014, 391, 9-15.	1.1	3
126	Synthesis of the tetrasaccharide repeating unit of the O-antigen of the Escherichia coli O69 strain and its conformational analysis. RSC Advances, 2014, 4, 37079-37084.	1.7	3

#	Article	IF	Citations
127	Salt Dependence Conformational Stability of the Dimeric SAM Domain of MAPKKK Ste11 from Budding Yeast: A Native-State H/D Exchange NMR Study. Biochemistry, 2020, 59, 2849-2858.	1.2	3
128	Synthesis of the pentasaccharide repeating unit of the O-antigen of Escherichia coli O175 using one-pot glycosylations and its conformational analysis. Tetrahedron, 2014, 70, 9262-9267.	1.0	2
129	Nonthermal Atmospheric Plasma-Induced Cellular Envelope Damage of <i>Staphylococcus aureus</i> and <i>Candida albicans</i> Biofilms: Spectroscopic and Biochemical Investigations. IEEE Transactions on Plasma Science, 2020, 48, 2768-2776.	0.6	2
130	Characterization of Antimicrobial Peptide–Membrane Interaction Using All-Atom Molecular Dynamic Simulation. Springer Protocols, 2020, , 163-176.	0.1	2
131	Editorial: Secondary Metabolites and Peptides as Unique Natural Reservoirs of New Therapeutic Leads for Treatment of Cancer and Microbial Infections. Frontiers in Chemistry, 2021, 9, 748180.	1.8	1
132	Zinc oxide nanoparticle interface moderation with tyrosine and tryptophan reverses the pro-amyloidogenic property of the particle. Biochimie, 2021, , .	1.3	1
133	Cell-Penetrating Peptides as Theranostics Against Impaired Blood-Brain Barrier Permeability: Implications for Pathogenesis and Therapeutic Treatment of Neurodegenerative Disease. Neuromethods, 2019, , 115-136.	0.2	0
134	Hanudatta S. Atreya (1974–2020). Magnetic Resonance in Chemistry, 2021, 59, 201-212.	1.1	0