Marcel A Verheijen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6582492/publications.pdf

Version: 2024-02-01

266 papers

12,289 citations

20817 60 h-index 101 g-index

278 all docs

278 docs citations

times ranked

278

13869 citing authors

#	Article	IF	CITATIONS
1	Twinning superlattices in indium phosphide nanowires. Nature, 2008, 456, 369-372.	27.8	625
2	Bright single-photon sources in bottom-up tailored nanowires. Nature Communications, 2012, 3, 737.	12.8	365
3	Single Quantum Dot Nanowire LEDs. Nano Letters, 2007, 7, 367-371.	9.1	349
4	Direct Band Gap Wurtzite Gallium Phosphide Nanowires. Nano Letters, 2013, 13, 1559-1563.	9.1	262
5	High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy and Environmental Science, 2017, 10, 91-100.	30.8	231
6	Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature, 2020, 580, 205-209.	27.8	231
7	Difference between Blocking and Néel Temperatures in the Exchange BiasedFe3O4/CoOSystem. Physical Review Letters, 2000, 84, 6102-6105.	7.8	226
8	The structure of different phases of pure C70 crystals. Chemical Physics, 1992, 166, 287-297.	1.9	195
9	Waveguide Nanowire Superconducting Single-Photon Detectors Fabricated on GaAs and the Study of Their Optical Properties. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 1-10.	2.9	188
10	Growth Kinetics of Heterostructured GaPâ^'GaAs Nanowires. Journal of the American Chemical Society, 2006, 128, 1353-1359.	13.7	182
11	Epitaxial growth of InP nanowires on germanium. Nature Materials, 2004, 3, 769-773.	27.5	178
12	21.6%-Efficient Monolithic Perovskite/Cu(In,Ga)Se ₂ Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces. ACS Energy Letters, 2019, 4, 583-590.	17.4	155
13	Controlling the fixed charge and passivation properties of Si(100)/Al2O3 interfaces using ultrathin SiO2 interlayers synthesized by atomic layer deposition. Journal of Applied Physics, 2011, 110, .	2.5	150
14	Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustainable Energy and Fuels, 2017, 1, 30-55.	4.9	150
15	Interface formation of two- and three-dimensionally bonded materials in the case of GeTe–Sb ₂ Te ₃ superlattices. Nanoscale, 2015, 7, 19136-19143.	5.6	145
16	Supported Core/Shell Bimetallic Nanoparticles Synthesis by Atomic Layer Deposition. Chemistry of Materials, 2012, 24, 2973-2977.	6.7	142
17	Hexagonal Silicon Realized. Nano Letters, 2015, 15, 5855-5860.	9.1	142
18	Critical review of the current status of thickness measurements for ultrathin SiO2 on Si Part V: Results of a CCQM pilot study. Surface and Interface Analysis, 2004, 36, 1269-1303.	1.8	138

#	Article	IF	Citations
19	Synthesis of InP Nanotubes. Journal of the American Chemical Society, 2003, 125, 3440-3441.	13.7	134
20	Efficiency Enhancement of InP Nanowire Solar Cells by Surface Cleaning. Nano Letters, 2013, 13, 4113-4117.	9.1	134
21	Island growth in the atomic layer deposition of zirconium oxide and aluminum oxide on hydrogen-terminated silicon: Growth mode modeling and transmission electron microscopy. Journal of Applied Physics, 2004, 96, 4878-4889.	2.5	132
22	Ultrahigh Capacitance Density for Multiple ALD-Grown MIM Capacitor Stacks in 3-D Silicon. IEEE Electron Device Letters, 2008, 29, 740-742.	3.9	130
23	Influence of Oxygen Exposure on the Nucleation of Platinum Atomic Layer Deposition: Consequences for Film Growth, Nanopatterning, and Nanoparticle Synthesis. Chemistry of Materials, 2013, 25, 1905-1911.	6.7	123
24	Efficient water reduction with gallium phosphide nanowires. Nature Communications, 2015, 6, 7824.	12.8	123
25	Position-controlled epitaxial III–V nanowires on silicon. Nanotechnology, 2006, 17, S271-S275.	2.6	116
26	Formation and electronic properties of InSb nanocrosses. Nature Nanotechnology, 2013, 8, 859-864.	31.5	115
27	From InSb Nanowires to Nanocubes: Looking for the Sweet Spot. Nano Letters, 2012, 12, 1794-1798.	9.1	109
28	Structural Characterization of Mesoporous Organosilica Films for Ultralow-kDielectrics. Journal of Physical Chemistry B, 2003, 107, 4280-4289.	2.6	107
29	Reversible Switching of InP Nanowire Growth Direction by Catalyst Engineering. Nano Letters, 2013, 13, 3802-3806.	9.1	107
30	Photoelectrochemical Hydrogen Production on InP Nanowire Arrays with Molybdenum Sulfide Electrocatalysts. Nano Letters, 2014, 14, 3715-3719.	9.1	106
31	Asymmetric magnetic bubble expansion under in-plane field in Pt/Co/Pt: Effect of interface engineering. Physical Review B, 2015, 91, .	3.2	106
32	Growth and optical properties of axial hybrid III–V/silicon nanowires. Nature Communications, 2012, 3, 1266.	12.8	105
33	Epitaxial Growth of III-V Nanowires on Group IV Substrates. MRS Bulletin, 2007, 32, 117-122.	3.5	95
34	Crystal Structure Transfer in Core/Shell Nanowires. Nano Letters, 2011, 11, 1690-1694.	9.1	93
35	Surface passivated InAs/InP core/shell nanowires. Semiconductor Science and Technology, 2010, 25, 024011.	2.0	92
36	The Role of Surface Energies and Chemical Potential during Nanowire Growth. Nano Letters, 2011, 11, 1259-1264.	9.1	92

#	Article	IF	Citations
37	Low-temperature plasma-enhanced atomic layer deposition of 2-D MoS ₂ : large area, thickness control and tuneable morphology. Nanoscale, 2018, 10, 8615-8627.	5.6	90
38	Low-Temperature Plasma-Assisted Atomic-Layer-Deposited SnO ₂ as an Electron Transport Layer in Planar Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 30367-30378.	8.0	88
39	Three-Dimensional Morphology of GaPâ^'GaAs Nanowires Revealed by Transmission Electron Microscopy Tomography. Nano Letters, 2007, 7, 3051-3055.	9.1	87
40	Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation. Nanotechnology, 2016, 27, 034001.	2.6	86
41	Tuning Material Properties of Oxides and Nitrides by Substrate Biasing during Plasma-Enhanced Atomic Layer Deposition on Planar and 3D Substrate Topographies. ACS Applied Materials & Diterfaces, 2018, 10, 13158-13180.	8.0	85
42	New orientationally ordered low-temperature superstructure in high-purityC60. Physical Review Letters, 1992, 69, 1065-1068.	7.8	80
43	Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 12532-12543.	5.5	80
44	Selective Excitation and Detection of Spin States in a Single Nanowire Quantum Dot. Nano Letters, 2009, 9, 1989-1993.	9.1	79
45	Vicinal Si(111) surfaces studied by optical second-harmonic generation: Step-induced anisotropy and surface-bulk discrimination. Physical Review B, 1990, 42, 9263-9266.	3.2	77
46	Enhanced Self-Assembled Monolayer Surface Coverage by ALD NiO in p-i-n Perovskite Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells. ACS	8.0	77
47	Structural phase transitions in C ₇₀ . Europhysics Letters, 1993, 21, 329-334.	2.0	72
48	Growth and Optical Properties of Direct Band Gap Ge/Ge _{0.87} Sn _{0.13} Core/Shell Nanowire Arrays. Nano Letters, 2017, 17, 1538-1544.	9.1	72
49	Dynamic reconfiguration of van der Waals gaps within GeTe–Sb ₂ Te ₃ based superlattices. Nanoscale, 2017, 9, 8774-8780.	5.6	71
50	Area-Selective Deposition of Ruthenium by Combining Atomic Layer Deposition and Selective Etching. Chemistry of Materials, 2019, 31, 3878-3882.	6.7	71
51	Remote p-Doping of InAs Nanowires. Nano Letters, 2007, 7, 1144-1148.	9.1	70
52	Generic nano-imprint process for fabrication of nanowire arrays. Nanotechnology, 2010, 21, 065305.	2.6	70
53	Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al ₂ O ₃ with PO _{<i>x</i>} Interlayer. Nano Letters, 2017, 17, 6287-6294.	9.1	68
54	Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition. Journal of Applied Physics, 2013, 114, .	2.5	67

#	Article	IF	CITATIONS
55	Uniform Atomic Layer Deposition of Al ₂ O ₃ on Graphene by Reversible Hydrogen Plasma Functionalization. Chemistry of Materials, 2017, 29, 2090-2100.	6.7	64
56	Atomic-layer deposited Nb2O5 as transparent passivating electron contact for c-Si solar cells. Solar Energy Materials and Solar Cells, 2018, 184, 98-104.	6.2	64
57	Revisiting the Local Structure in Ge-Sb-Te based Chalcogenide Superlattices. Scientific Reports, 2016, 6, 22353.	3.3	63
58	Position-controlled [100] InP nanowire arrays. Applied Physics Letters, 2012, 100, 053107.	3.3	62
59	Rationally Designed Singleâ€Crystalline Nanowire Networks. Advanced Materials, 2014, 26, 4875-4879.	21.0	62
60	Atomic Layer Deposition of High-Purity Palladium Films from Pd(hfac) ₂ and H ₂ and O ₂ Plasmas. Journal of Physical Chemistry C, 2014, 118, 8702-8711.	3.1	62
61	Area-Selective Atomic Layer Deposition of ZnO by Area Activation Using Electron Beam-Induced Deposition. Chemistry of Materials, 2019, 31, 1250-1257.	6.7	62
62	Interface study on heterostructured GaP–GaAs nanowires. Nanotechnology, 2006, 17, 4010-4013.	2.6	60
63	Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition. Nanotechnology, 2015, 26, 094002.	2.6	60
64	High optical quality single crystal phase wurtzite and zincblende InP nanowires. Nanotechnology, 2013, 24, 115705.	2.6	59
65	Single-Crystalline Hexagonal Silicon–Germanium. Nano Letters, 2017, 17, 85-90.	9.1	59
66	Lattice vibrations in crystallineC70. Physical Review B, 1993, 47, 7610-7613.	3.2	58
67	Direct-Write Atomic Layer Deposition of High-Quality Pt Nanostructures: Selective Growth Conditions and Seed Layer Requirements. Journal of Physical Chemistry C, 2013, 117, 10788-10798.	3.1	58
68	Hexagonal close-packed C60. Chemical Physics Letters, 1994, 219, 469-472.	2.6	57
69	Edge-Site Nanoengineering of WS ₂ by Low-Temperature Plasma-Enhanced Atomic Layer Deposition for Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2019, 31, 5104-5115.	6.7	57
70	Low-temperature structure of solid C70. Chemical Physics Letters, 1994, 223, 323-328.	2.6	56
71	Tuning structural motifs and alloying of bulk immiscible Mo–Cu bimetallic nanoparticles by gas-phase synthesis. Nanoscale, 2013, 5, 5375.	5.6	56
72	Exploring Crystal Phase Switching in GaP Nanowires. Nano Letters, 2015, 15, 8062-8069.	9.1	55

#	Article	IF	CITATIONS
73	Atomic stacking and van-der-Waals bonding in GeTe–Sb ₂ Te ₃ superlattices. Journal of Materials Research, 2016, 31, 3115-3124.	2.6	53
74	Physical and Chemical Defects in WO ₃ Thin Films and Their Impact on Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2018, 1, 5887-5895.	5.1	53
75	Electrocatalytic activity of atomic layer deposited Pt–Ru catalysts onto N-doped carbon nanotubes. Journal of Catalysis, 2014, 311, 481-486.	6.2	51
76	Boosting Hole Mobility in Coherently Strained [110]-Oriented Ge–Si Core–Shell Nanowires. Nano Letters, 2017, 17, 2259-2264.	9.1	51
77	Parity-preserving and magnetic field–resilient superconductivity in InSb nanowires with Sn shells. Science, 2021, 372, 508-511.	12.6	50
78	Explanation for the leakage current in polycrystalline-silicon thin-film transistors made by Ni-silicide mediated crystallization. Applied Physics Letters, 2002, 81, 3404-3406.	3.3	49
79	Atomic layer deposition of B-doped ZnO using triisopropyl borate as the boron precursor and comparison with Al-doped ZnO. Journal of Materials Chemistry C, 2015, 3, 3095-3107.	5.5	48
80	Boosting the Performance of WO ₃ /nâ€Si Heterostructures for Photoelectrochemical Water Splitting: from the Role of Si to Interface Engineering. Advanced Energy Materials, 2019, 9, 1900940.	19.5	48
81	Selective-area chemical beam epitaxy of in-plane InAs one-dimensional channels grown on InP(001), InP(111)B, and InP(011) surfaces. Physical Review Materials, 2019, 3, .	2.4	48
82	Large area, patterned growth of 2D MoS ₂ and lateral MoS ₂ –WS ₂ heterostructures for nano- and opto-electronic applications. Nanotechnology, 2020, 31, 255603.	2.6	46
83	Electron emission from individual nitrogen-doped multi-walled carbon nanotubes. Chemical Physics Letters, 2004, 396, 126-130.	2.6	45
84	Area-Selective Atomic Layer Deposition of Two-Dimensional WS ₂ Nanolayers., 2020, 2, 511-518.		45
85	Improved Pd/CeO ₂ Catalysts for Low-Temperature NO Reduction: Activation of CeO ₂ Lattice Oxygen by Fe Doping. ACS Catalysis, 2021, 11, 5614-5627.	11.2	44
86	Area-Selective Atomic Layer Deposition of TiN Using Aromatic Inhibitor Molecules for Metal/Dielectric Selectivity. Chemistry of Materials, 2020, 32, 7788-7795.	6.7	42
87	Zinc Incorporation via the Vaporâ 'Liquidâ 'Solid Mechanism into InP Nanowires. Journal of the American Chemical Society, 2009, 131, 4578-4579.	13.7	41
88	Paired Twins and {112ì} Morphology in GaP Nanowires. Nano Letters, 2010, 10, 2349-2356.	9.1	41
89	Encapsulation method for atom probe tomography analysis of nanoparticles. Ultramicroscopy, 2015, 159, 420-426.	1.9	40
90	Atomic layer deposition of high-mobility hydrogen-doped zinc oxide. Solar Energy Materials and Solar Cells, 2017, 173, 111-119.	6.2	40

#	Article	IF	CITATIONS
91	Chemical Analysis of the Interface between Hybrid Organic–Inorganic Perovskite and Atomic Layer Deposited Al ₂ O ₃ . ACS Applied Materials & Deposited Al ₂ . Deposited Al ₂ . Deposited Al ₂ . Deposited Al ₃ . Deposited Al ₄ . Deposited Al	8.0	40
92	Real time in situ spectroscopic ellipsometry of the growth and plasmonic properties of au nanoparticles on SiO2. Nano Research, 2012, 5, 513-520.	10.4	37
93	In-plane selective area InSb–Al nanowire quantum networks. Communications Physics, 2020, 3, .	5.3	37
94	Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution. Journal of Applied Physics, 2013, 113, .	2.5	36
95	High Mobility Stemless InSb Nanowires. Nano Letters, 2019, 19, 3575-3582.	9.1	36
96	Low-temperature diffusion of high-concentration phosphorus in silicon, a preferential movement toward the surface. Applied Physics Letters, 2005, 86, 081917.	3.3	35
97	Detection of the Presence of Gold Nanoparticles in Organs by Transmission Electron Microscopy. Materials, 2010, 3, 4681-4694.	2.9	35
98	Low-Temperature Phase-Controlled Synthesis of Titanium Di- and Tri-sulfide by Atomic Layer Deposition. Chemistry of Materials, 2019, 31, 9354-9362.	6.7	35
99	Orientationâ€Dependent Opticalâ€Polarization Properties of Single Quantum Dots in Nanowires. Small, 2009, 5, 2134-2138.	10.0	33
100	Understanding the Film Formation Kinetics of Sequential Deposited Narrowâ€Bandgap Pb–Sn Hybrid Perovskite Films. Advanced Energy Materials, 2020, 10, 2000566.	19.5	33
101	Towards the implementation of atomic layer deposited In2O3:H in silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2017, 163, 43-50.	6.2	32
102	Atomic layer deposition of HfO2 using HfCp(NMe2)3 and O2 plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	32
103	Low resistivity HfN _x grown by plasma-assisted ALD with external rf substrate biasing. Journal of Materials Chemistry C, 2018, 6, 3917-3926.	5.5	31
104	Phonon Engineering in Twinning Superlattice Nanowires. Nano Letters, 2019, 19, 4702-4711.	9.1	31
105	Electrically conductive coatings consisting of Ag-decorated cellulose nanocrystals. Cellulose, 2017, 24, 2191-2204.	4.9	30
106	Isotropic Atomic Layer Etching of ZnO Using Acetylacetone and O ₂ Plasma. ACS Applied Materials & Discrete Samp; Interfaces, 2018, 10, 38588-38595.	8.0	30
107	Ballistic Phonons in Ultrathin Nanowires. Nano Letters, 2020, 20, 2703-2709.	9.1	30
108	HfSiO[sub 4] Dielectric Layers Deposited by ALD Using HfCl[sub 4] and NH[sub 2](CH[sub 2])[sub 3]Si(OC[sub 2]H[sub 5])[sub 3] Precursors. Journal of the Electrochemical Society, 2004, 151, C716.	2.9	28

#	Article	IF	Citations
109	Atomic Layer Deposition of Highly Transparent Platinum Counter Electrodes for Metal/Polymer Flexible Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1300831.	19.5	28
110	Dopant Distribution in Atomic Layer Deposited ZnO:Al Films Visualized by Transmission Electron Microscopy and Atom Probe Tomography. Chemistry of Materials, 2018, 30, 1209-1217.	6.7	28
111	Critical strain for Sn incorporation into spontaneously graded Ge/GeSn core/shell nanowires. Nanoscale, 2018, 10, 7250-7256.	5.6	28
112	Sunlight-Fueled, Low-Temperature Ru-Catalyzed Conversion of CO ₂ and H ₂ to CH ₄ with a High Photon-to-Methane Efficiency. ACS Omega, 2019, 4, 7369-7377.	3.5	28
113	Atomic-layer-deposited Al-doped zinc oxide as a passivating conductive contacting layer for n+-doped surfaces in silicon solar cells. Solar Energy Materials and Solar Cells, 2021, 233, 111386.	6.2	28
114	In situtransmission electron microscopy analysis of electron beam induced crystallization of amorphous marks in phase-change materials. Journal of Applied Physics, 2004, 96, 3193-3198.	2.5	27
115	On the solid phase crystallization of In2O3:H transparent conductive oxide films prepared by atomic layer deposition. Journal of Applied Physics, 2016, 120, .	2.5	27
116	Crystal Phase Quantum Well Emission with Digital Control. Nano Letters, 2017, 17, 6062-6068.	9.1	27
117	Surface Fluorination of ALD TiO ₂ Electron Transport LayerÂfor Efficient Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1701456.	3.7	27
118	Improved structural and electrical properties in native Sb2Te3/GexSb2Te3+x van der Waals superlattices due to intermixing mitigation. APL Materials, 2017, 5, .	5.1	26
119	Bottomâ€Up Grown 2D InSb Nanostructures. Advanced Materials, 2019, 31, e1808181.	21.0	26
120	Precise ion energy control with tailored waveform biasing for atomic scale processing. Journal of Applied Physics, 2020, 128, .	2.5	26
121	Nitrogen-doping of bulk and nanotubular TiO2 photocatalysts by plasma-assisted atomic layer deposition. Applied Surface Science, 2015, 330, 476-486.	6.1	24
122	Collective photothermal effect of Al ₂ O ₃ â€supported spheroidal plasmonic Ru nanoparticle catalysts in the sunlightâ€powered Sabatier reaction. ChemCatChem, 2020, 12, 5618-5622.	3.7	24
123	Cracking the Si Shell Growth in Hexagonal GaP-Si Core–Shell Nanowires. Nano Letters, 2015, 15, 2974-2979.	9.1	23
124	Quantitative prediction of junction leakage in bulk-technology CMOS devices. Solid-State Electronics, 2010, 54, 243-251.	1.4	22
125	Formation of Wurtzite InP Nanowires Explained by Liquid-Ordering. Nano Letters, 2011, 11, 44-48.	9.1	22
126	Spin–Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas. Nano Letters, 2018, 18, 6483-6488.	9.1	22

#	Article	IF	CITATIONS
127	Strain engineering in Ge/GeSn core/shell nanowires. Applied Physics Letters, 2019, 115, .	3.3	22
128	Probing the Origin and Suppression of Vertically Oriented Nanostructures of 2D WS ₂ Layers. ACS Applied Materials & Interfaces, 2020, 12, 3873-3885.	8.0	22
129	Atomic Layer Deposition of Al-Doped MoS ₂ : Synthesizing a p-type 2D Semiconductor with Tunable Carrier Density. ACS Applied Nano Materials, 2020, 3, 10200-10208.	5.0	22
130	Structures and phase transitions in C60 and C70 fullerites. Ultramicroscopy, 1993, 51, 168-188.	1.9	21
131	The competing roles of i-ZnO in Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 798-807.	6.2	21
132	Atomic Layer Deposition of In ₂ O ₃ :H from InCp and H ₂ O/O ₂ : Microstructure and Isotope Labeling Studies. ACS Applied Materials & Samp; Interfaces, 2017, 9, 592-601.	8.0	21
133	Extraction of Dzyaloshinskii-Moriya interaction from propagating spin waves. Physical Review B, 2020, 101, .	3.2	21
134	Surface passivation of germanium by atomic layer deposited Al2O3 nanolayers. Journal of Materials Research, 2021, 36, 571-581.	2.6	21
135	Direct measurement of the near-field super resolved focused spot in InSb. Optics Express, 2012, 20, 10426.	3.4	20
136	Ordered Peierls distortion prevented at growth onset of GeTe ultra-thin films. Scientific Reports, 2016, 6, 32895.	3.3	20
137	Surface Infrared Spectroscopy during Low Temperature Growth of Supported Pt Nanoparticles by Atomic Layer Deposition. Journal of Physical Chemistry C, 2016, 120, 750-755.	3.1	20
138	The Influence of Particle Size Distribution and Shell Imperfections on the Plasmon Resonance of Au and Ag Nanoshells. Plasmonics, 2017, 12, 929-945.	3.4	20
139	Enhanced field-driven domain-wall motion in Pt/Co68B32/Pt strips. Applied Physics Letters, 2011, 98, .	3.3	19
140	Glucose-functionalized polystyrene particles designed for selective deposition of silver on the surface. RSC Advances, 2014, 4, 62878-62881.	3.6	19
141	Highly porous, ultra-low refractive index coatings produced through random packing of silicated cellulose nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487, 1-8.	4.7	19
142	Pseudodirect to Direct Compositional Crossover in Wurtzite GaP/In _{<i>x</i>} Ga _{1–<i>x</i>} P Core–Shell Nanowires. Nano Letters, 2016, 16, 7930-7936.	9.1	19
143	Strong reduction of spectral heterogeneity in gold bipyramids for single-particle and single-molecule plasmon sensing. Nanotechnology, 2016, 27, 024001.	2.6	18
144	Synthesis of single-walled carbon nanotubes from atomic-layer-deposited Co3O4 and Co3O4/Fe2O3 catalyst films. Carbon, 2017, 121, 389-398.	10.3	18

#	Article	IF	Citations
145	Surface passivation of $\langle i \rangle n \langle i \rangle$ -type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks. Applied Physics Letters, 2017, 110, .	3.3	18
146	Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge–Si Nanowires. Nano Letters, 2020, 20, 122-130.	9.1	18
147	Plasma-assisted atomic layer deposition of conformal Pt films in high aspect ratio trenches. Journal of Chemical Physics, 2017, 146, 052818.	3.0	17
148	Atomic layer deposition of highly dispersed Pt nanoparticles on a high surface area electrode backbone for electrochemical promotion of catalysis. Electrochemistry Communications, 2017, 84, 40-44.	4.7	17
149	Twofold origin of strain-induced bending in core–shell nanowires: the GaP/InGaP case. Nanotechnology, 2018, 29, 315703.	2.6	17
150	Probing Lattice Dynamics and Electronic Resonances in Hexagonal Ge and Si _{<i>x</i>} Ge _{1–<i>x</i>} Alloys in Nanowires by Raman Spectroscopy. ACS Nano, 2020, 14, 6845-6856.	14.6	17
151	Kinetic Control of Morphology and Composition in Ge/GeSn Core/Shell Nanowires. ACS Nano, 2020, 14, 2445-2455.	14.6	17
152	Efficient Green Emission from Wurtzite Al _{<i>x</i>} In _{1–<i>x</i>} P Nanowires. Nano Letters, 2018, 18, 3543-3549.	9.1	16
153	Impact of Ions on Film Conformality and Crystallinity during Plasma-Assisted Atomic Layer Deposition of TiO ₂ . Chemistry of Materials, 2021, 33, 5002-5009.	6.7	16
154	Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO Oxidation on Pd/CeO ₂ Catalysts. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
155	Low Temperature Sunlightâ€Powered Reduction of CO ₂ to CO Using a Plasmonic Au/TiO ₂ Nanocatalyst. ChemCatChem, 2021, 13, 4507-4513.	3.7	15
156	ScAlN nanowires: A cathodoluminescence study. Journal of Crystal Growth, 2009, 311, 3147-3151.	1.5	14
157	Zirconia thin film preparation by wet chemical methods at low temperature. Thin Solid Films, 2010, 519, 630-634.	1.8	14
158	Plasma-Assisted Deposition of Au/SiO2 Multi-layers as Surface Plasmon Resonance-Based Red-Colored Coatings. Plasmonics, 2011, 6, 255-260.	3.4	14
159	Excellent surface passivation of germanium by a-Si:H/Al2O3 stacks. Journal of Applied Physics, 2021, 130,	2.5	14
160	Characterization of Laminated CeO[sub 2]–HfO[sub 2] High-k Gate Dielectrics Grown by Pulsed Laser Deposition. Journal of the Electrochemical Society, 2006, 153, F233.	2.9	13
161	(Invited) Area-Selective Atomic Layer Deposition: Role of Surface Chemistry. ECS Transactions, 2017, 80, 39-48.	0.5	13
162	Polarized Raman spectroscopy to elucidate the texture of synthesized MoS ₂ . Nanoscale, 2019, 11, 22860-22870.	5.6	13

#	Article	IF	CITATIONS
163	Plasma-Assisted ALD of Highly Conductive HfNx: On the Effect of Energetic Ions on Film Microstructure. Plasma Chemistry and Plasma Processing, 2020, 40, 697-712.	2.4	13
164	Growth of PbTe nanowires by molecular beam epitaxy. Materials for Quantum Technology, 2022, 2, 015001.	3.1	13
165	Morphology of modulated crystals and quasicrystals. Journal Physics D: Applied Physics, 1991, 24, 186-198.	2.8	12
166	Hexagonal silicon grown from higher order silanes. Nanotechnology, 2019, 30, 295602.	2.6	12
167	Atomic layer deposition of Nb-doped TiO2: Dopant incorporation and effect of annealing. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	12
168	Electrical and structural characterization of PLD grown CeO2–HfO2 laminated high-k gate dielectrics. Materials Science in Semiconductor Processing, 2006, 9, 1061-1064.	4.0	11
169	Crystallization Study by Transmission Electron Microscopy of SrTiO ₃ Thin Films Prepared by Plasma-Assisted ALD. ECS Journal of Solid State Science and Technology, 2013, 2, N120-N124.	1.8	11
170	Plasmaâ€Assisted Atomic Layer Deposition of PtO _{<i>x</i>} from (MeCp)PtMe ₃ and O ₂ Plasma. Chemical Vapor Deposition, 2014, 20, 258-268.	1.3	11
171	High-Yield Growth and Characterization of ⟠100⟠© InP p–n Diode Nanowires. Nano Letters, 2016, 16, 3071-3077.	9.1	11
172	Influence of growth conditions on the performance of InP nanowire solar cells. Nanotechnology, 2016, 27, 454003.	2.6	10
173	Editorial Expression of Concern: Quantized Majorana conductance. Nature, 2020, 581, E4-E4.	27.8	10
174	Universal Platform for Scalable Semiconductorâ€Superconductor Nanowire Networks. Advanced Functional Materials, 2021, 31, 2103062.	14.9	10
175	Thickness and composition of ultrathin SiO2 layers on Si. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1572-1578.	2.1	9
176	Characterization of Thermal and Electrical Stability of MOCVD HfO[sub 2]-HfSiO[sub 4] Dielectric Layers with Polysilicon Electrodes for Advanced CMOS Technologies. Journal of the Electrochemical Society, 2004, 151, G870.	2.9	9
177	Improved conductivity of aluminum-doped ZnO: The effect of hydrogen diffusion from a hydrogenated amorphous silicon capping layer. Journal of Applied Physics, 2012, 111, 063715.	2.5	9
178	Controlling the resistivity gradient in aluminum-doped zinc oxide grown by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 2012, 112, .	2.5	9
179	In situ crystallization kinetics studies of plasma-deposited, hydrogenated amorphous silicon layers. Journal of Applied Physics, 2012, 111, 033508.	2.5	9
180	Silicon heterojunction solar cell passivation in combination with nanocrystalline silicon oxide emitters. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1932-1936.	1.8	9

#	Article	IF	Citations
181	Plasma-assisted atomic layer deposition of HfNx: Tailoring the film properties by the plasma gas composition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	9
182	Transition in layer structure of atomic/molecular layer deposited ZnO-zincone multilayers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	9
183	Continuous-Flow Sunlight-Powered CO2 Methanation Catalyzed by Î ³ -Al2O3-Supported Plasmonic Ru Nanorods. Catalysts, 2022, 12, 126.	3.5	9
184	Controlling transition metal atomic ordering in two-dimensional Mo _{1â^'x} W _x S ₂ alloys. 2D Materials, 2022, 9, 025016.	4.4	9
185	Thickness and Morphology Dependent Electrical Properties of ALDâ€Synthesized MoS ₂ FETs. Advanced Electronic Materials, 2022, 8, .	5.1	9
186	A superspace description for the morphology of modulated crystals: An explanation for the occurrence of faces (hklm). The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1994, 69, 69-82.	0.6	8
187	Epitaxial Growth of III-V Nanowires on Group IV Substrates. Materials Research Society Symposia Proceedings, 2008, 1068, 1.	0.1	8
188	Solid-phase crystallization of ultra high growth rate amorphous silicon films. Journal of Applied Physics, 2012, 111, 103510.	2.5	8
189	Functional nickel-based deposits synthesized by focused beam induced processing. Nanotechnology, 2016, 27, 065303.	2.6	8
190	Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches. Polymers, 2017, 9, 475.	4.5	8
191	Flow Cell Coupled Dynamic Light Scattering for Real-Time Monitoring of Nanoparticle Size during Liquid Phase Bottom-Up Synthesis. Applied Sciences (Switzerland), 2018, 8, 108.	2.5	8
192	Atomic layer deposition of ruthenium using an ABC-type process: Role of oxygen exposure during nucleation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	8
193	Unveiling Planar Defects in Hexagonal Group IV Materials. Nano Letters, 2021, 21, 3619-3625.	9.1	8
194	On the Contact Optimization of ALD-Based MoS ₂ FETs: Correlation of Processing Conditions and Interface Chemistry with Device Electrical Performance. ACS Applied Electronic Materials, 2021, 3, 3185-3199.	4.3	8
195	Conformal Growth of Nanometer-Thick Transition Metal Dichalcogenide TiS <i></i> >hotology TiS <i></i> hotology TiS <i>Heterostructures over 3D Substrates by Atomic Layer Deposition: Implications for Device Fabrication. ACS Applied Nano Materials, 2021, 4, 514-521.</i>	5.0	8
196	Transmission electron microscopy specimen holder for simultaneousin situheating and electrical resistance measurements. Review of Scientific Instruments, 2004, 75, 426-429.	1.3	7
197	In situ transmission electron microscopy observations of individually selected freestanding carbon nanotubes during field emission. Ultramicroscopy, 2006, 106, 902-908.	1.9	7
198	Growth of scandium aluminum nitride nanowires on ScN(111) films on 6Hâ€SiC substrates by HVPE. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2809-2815.	1.8	7

#	Article	IF	Citations
199	Nanostructure–property relations for phaseâ€change random access memory (PCRAM) line cells. Physica Status Solidi (B): Basic Research, 2012, 249, 1972-1977.	1.5	7
200	Facile and Versatile Platform Approach for the Synthesis of Submicrometer-Sized Hybrid Particles with Programmable Size, Composition, and Architecture Comprising Organosiloxanes and/or Organosilsesquioxanes. Chemistry of Materials, 2014, 26, 5718-5724.	6.7	7
201	Electrochemistry of Sputtered Hematite Photoanodes: A Comparison of Metallic DC versus Reactive RF Sputtering. ACS Omega, 2019, 4, 9262-9270.	3.5	7
202	Phase separation of VO2 and SiO2 on SiO2-Coated float glass yields robust thermochromic coating with unrivalled optical properties. Solar Energy Materials and Solar Cells, 2021, 230, 111238.	6.2	7
203	Optical and atomic force microscopy studies of rhombohedral domains in C ₇₀ crystals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1995, 72, 1141-1159.	0.6	6
204	On the Growth, Percolation and Wetting of Silver Thin Films Grown by Atmospheric-Plasma Enhanced Spatial Atomic Layer Deposition. ECS Transactions, 2016, 75, 129-142.	0.5	6
205	Impurity and Defect Monitoring in Hexagonal Si and SiGe Nanocrystals. ECS Transactions, 2016, 75, 751-760.	0.5	6
206	Archival-overwrite performance of GeSnSb-based phase-change discs. Journal of Applied Physics, 2006, 99, 066111.	2.5	5
207	Correlative transmission electron microscopy and electrical properties study of switchable phase-change random access memory line cells. Journal of Applied Physics, 2015, 117, 064504.	2.5	5
208	Expanding Thermal Plasma Deposition of Alâ€Doped ZnO: On the Effect of the Plasma Chemistry on Film Growth Mechanisms. Plasma Processes and Polymers, 2016, 13, 54-69.	3.0	5
209	Protecting patches in colloidal synthesis of Au semishells. Chemical Communications, 2017, 53, 3898-3901.	4.1	5
210	Full characterization and modeling of graded interfaces in a high lattice-mismatch axial nanowire heterostructure. Physical Review Materials, 2020, 4, .	2.4	5
211	Explanation for the occurrence of {hklm} faces on modulated crystals. Faraday Discussions, 1993, 95, 3.	3.2	4
212	On the hypomorphism of ADP crystals. Journal of Crystal Growth, 1996, 160, 337-345.	1.5	4
213	Advanced PMOS Device Architecture for Highly-Doped Ultra-Shallow Junctions. Japanese Journal of Applied Physics, 2004, 43, 1778-1783.	1.5	4
214	Room Temperature Sensing of O ₂ and CO by Atomic Layer Deposition Prepared ZnO Films Coated with Pt Nanoparticles. ECS Transactions, 2013, 58, 203-214.	0.5	4
215	Receptor-Targeted Luminescent Silver Bionanoparticles. European Journal of Inorganic Chemistry, 2016, 2016, 3030-3035.	2.0	4
216	Decoupling high surface recombination velocity and epitaxial growth for silicon passivation layers on crystalline silicon. Journal Physics D: Applied Physics, 2017, 50, 065305.	2.8	4

#	Article	lF	Citations
217	Atomic-layer deposited passivation schemes for c-Si solar cells. , 2017, , .		4
218	Shape and structural motifs control of MgTi bimetallic nanoparticles using hydrogen and methane as trace impurities. Nanoscale, 2018, 10, 1297-1307.	5 . 6	4
219	Bottom-up meets top-down: tailored raspberry-like Fe ₃ O ₄ –Pt nanocrystal superlattices. Nanoscale, 2018, 10, 5859-5863.	5. 6	4
220	Qualification of an Ultrasonic Instrument for Real-Time Monitoring of Size and Concentration of Nanoparticles during Liquid Phase Bottom-Up Synthesis. Applied Sciences (Switzerland), 2018, 8, 1064.	2.5	4
221	Synthesis of edge-enriched WS2 on high surface area WS2 framework by atomic layer deposition for electrocatalytic hydrogen evolution reaction. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	4
222	Comparing the Performance of Supported Ru Nanocatalysts Prepared by Chemical Reduction of RuCl3 and Thermal Decomposition of Ru3(CO)12 in the Sunlight-Powered Sabatier Reaction. Catalysts, 2022, $12,284$.	3 . 5	4
223	Mechanism of C60 crystal growth from the vapour. Journal of Crystal Growth, 1997, 172, 136-144.	1.5	3
224	Evolution of fluorine and boron profiles during annealing in crystalline Si. Journal of Vacuum Science & Technology B, 2008, 26, 377.	1.3	3
225	ALD of SrTiO ₃ and Pt for Pt/SrTiO ₃ /Pt MIM Structures: Growth and Crystallization Study. ECS Transactions, 2013, 58, 153-162.	0.5	3
226	Investigation of Embedded Perovskite Nanoparticles for Enhanced Capacitor Permittivities. ACS Applied Materials & Samp; Interfaces, 2014, 6, 19737-19743.	8.0	3
227	Atomic-layer deposited passivation schemes for c-Si solar cells. , 2016, , .		3
228	Gas phase grown silicon germanium nanocrystals. Chemical Physics Letters, 2016, 661, 185-190.	2.6	3
229	Nucleation of microcrystalline silicon: on the effect of the substrate surface nature and nano-imprint topography. Journal Physics D: Applied Physics, 2016, 49, 055205.	2.8	3
230	Microscopic studies of polycrystalline nanoparticle growth in free space. Journal of Crystal Growth, 2017, 467, 137-144.	1.5	3
231	Synthesis and Characterization of Hybrid Particles Obtained in a One-Pot Process through Simultaneous Sol-Gel Reaction of (3-Mercaptopropyl)trimethoxysilane and Emulsion Polymerization of Styrene. Colloids and Interfaces, 2017, 1, 7.	2.1	3
232	In situ topography of the (2 0 0) face of Ϊμ-caprolactam growing from the vapour phase. Journal of Crystal Growth, 1997, 180, 284-292.	1.5	2
233	Cross-sectional studies of epitaxial growth of InP and GaP nanowires on Si and Ge. , 2005, , 295-298.		2
234	Laminated CeO2/HfO2 High-K Gate Dielectrics Grown by Pulsed Laser Deposition in Reducing Ambient. ECS Transactions, 2006, 3, 521-533.	0.5	2

#	Article	IF	CITATIONS
235	Wurtzite Gallium Phosphide has a direct-band gap. , 2013, , .		2
236	Crystallization Study by Transmission Electron Microscopy of SrTiO3 Thin Films Prepared by Plasma-Assisted ALD. ECS Transactions, 2013, 50, 69-77.	0.5	2
237	Compositional and Structural Analysis of Al-doped ZnO Multilayers by LEAP. Microscopy and Microanalysis, 2014, 20, 526-527.	0.4	2
238	Novel microreactor and generic model catalyst platform for the study of fast temperature pulsed operation – CO oxidation rate enhancement on Pt. Chemical Engineering Journal, 2021, 425, 131559.	12.7	2
239	The stability of satellite faces on modulated crystals. Journal of Physics Condensed Matter, 1995, 7, 9369-9384.	1.8	1
240	In situ electrical resistance measurements of Al-Ge films in the TEM using a modified heating holder. Materials Research Society Symposia Proceedings, 2000, 615, 611.	0.1	1
241	Epitaxial III-V Nanowires on Silicon for Vertical Devices. ECS Transactions, 2006, 3, 415-423.	0.5	1
242	Low VT Mo(O,N) metal gate electrodes on HfSiON for sub-45nm pMOSFET Devices. , 2006, , .		1
243	Towards vertical III-V nanowire devices on silicon. Device Research Conference, IEEE Annual, 2007, , .	0.0	1
244	Si interstitial contribution of F+ implants in crystalline Si. Journal of Applied Physics, 2008, 103, .	2.5	1
245	Rational Design: Rationally Designed Singleâ€Crystalline Nanowire Networks (Adv. Mater. 28/2014). Advanced Materials, 2014, 26, 4908-4908.	21.0	1
246	p-type nc-SiOx:H emitter layer for silicon heterojunction solar cells grown by rf-PECVD. Materials Research Society Symposia Proceedings, 2015, 1770, 7-12.	0.1	1
247	Prismatic Ge-rich inclusions in the hexagonal SiGe shell of GaP–Si–SiGe nanowires by controlled faceting. Nanoscale, 2021, 13, 9436-9445.	5.6	1
248	Development of a Rubber Coated Mineral Fiber for Disc Pad Applications. , 2002, , .		0
249	Monocrystalline InP Nanotubes. Materials Research Society Symposia Proceedings, 2003, 789, 127.	0.1	0
250	Dedicated FIB Preparation for TEM Cross-section Samples of Nanowires Grown Vertically on Silicon Substrates. Microscopy and Microanalysis, 2006, 12, 504-505.	0.4	0
251	Analysis of the Degradation Mechanism during Repeated Overwrite of Phase-Change Discs. Japanese Journal of Applied Physics, 2007, 46, 1037-1041.	1.5	0
252	Towards vertical III-V nanowire devices. , 2007, , .		0

#	Article	IF	CITATIONS
253	F+ implants in crystalline Si: the Si interstitial contribution. Materials Research Society Symposia Proceedings, 2008, 1070, 1.	0.1	0
254	Periodic nanowire structures. , 2010, , .		0
255	InP nanowire array solar cell with cleaned sidewalls. , 2013, , .		0
256	Direct band gap wurtzite GaP nanowires for LEDs and quantum devices. Proceedings of SPIE, 2014, , .	0.8	0
257	Crossed InSb nanowire junctions for Majorana operations. , 2016, , .		0
258	New opportunities with nanowires. , 2016, , .		0
259	Enhanced self-assembled monolayer surface coverage by ALD NiO for p-i-n perovskite solar cells. , 0, , .		0
260	III-Phospide Nanowires., 2011,, 43-67.		0
261	Thin Conformal Hole Transport Layers Enabling Highly Efficient Monolithic Perovskite/CIGSe Tandem Solar Cells. , 0, , .		0
262	Towards a Hexagonal SiGe Semiconductor Laser , 2020, , .		0
263	Transition Matrix Element and Recombination Mechanism of Hexagonal SiGe , 2020, , .		0
264	Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO Oxidation on Pd/CeO ₂ Catalysts. Angewandte Chemie, 0, , .	2.0	0
265	Growthâ€Related Formation Mechanism of I3â€Type Basal Stacking Fault in Epitaxially Grown Hexagonal Geâ€2H. Advanced Materials Interfaces, 0, , 2102340.	3.7	0
266	Titelbild: Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO Oxidation on Pd/CeO ₂ Catalysts (Angew. Chem. 23/2022). Angewandte Chemie, 2022, 134, .	2.0	0

16