Marcel A Verheijen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6582492/marcel-a-verheijen-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

252
papers

9,931
citations

55
h-index

92
g-index

11,192
ext. papers

7.6
avg, IF

L-index

#	Paper	IF	Citations
252	Continuous-Flow Sunlight-Powered CO2 Methanation Catalyzed by EAl2O3-Supported Plasmonic Ru Nanorods. <i>Catalysts</i> , 2022 , 12, 126	4	1
251	Comparing the Performance of Supported Ru Nanocatalysts Prepared by Chemical Reduction of RuCl3 and Thermal Decomposition of Ru3(CO)12 in the Sunlight-Powered Sabatier Reaction. <i>Catalysts</i> , 2022 , 12, 284	4	0
250	Controlling transition metal atomic ordering in two-dimensional Mo1⊠ W x S2 alloys. <i>2D Materials</i> , 2022 , 9, 025016	5.9	О
249	Thickness and Morphology Dependent Electrical Properties of ALD-Synthesized MoS 2 FETs. <i>Advanced Electronic Materials</i> , 2022 , 8, 2100781	6.4	О
248	Enhanced Self-Assembled Monolayer Surface Coverage by ALD NiO in p-i-n Perovskite Solar Cells <i>ACS Applied Materials & Diverfaces</i> , 2021 ,	9.5	9
247	Excellent surface passivation of germanium by a-Si:H/Al2O3 stacks. <i>Journal of Applied Physics</i> , 2021 , 130, 135303	2.5	4
246	Parity-preserving and magnetic field-resilient superconductivity in InSb nanowires with Sn shells. <i>Science</i> , 2021 , 372, 508-511	33.3	13
245	Improved Pd/CeO Catalysts for Low-Temperature NO Reduction: Activation of CeO Lattice Oxygen by Fe Doping. <i>ACS Catalysis</i> , 2021 , 11, 5614-5627	13.1	10
244	Unveiling Planar Defects in Hexagonal Group IV Materials. <i>Nano Letters</i> , 2021 , 21, 3619-3625	11.5	3
243	Impact of Ions on Film Conformality and Crystallinity during Plasma-Assisted Atomic Layer Deposition of TiO. <i>Chemistry of Materials</i> , 2021 , 33, 5002-5009	9.6	5
242	On the Contact Optimization of ALD-Based MoS FETs: Correlation of Processing Conditions and Interface Chemistry with Device Electrical Performance. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 3185-	3 199	2
241	Universal Platform for Scalable Semiconductor-Superconductor Nanowire Networks. <i>Advanced Functional Materials</i> , 2021 , 31, 2103062	15.6	1
240	Prismatic Ge-rich inclusions in the hexagonal SiGe shell of GaP-Si-SiGe nanowires by controlled faceting. <i>Nanoscale</i> , 2021 , 13, 9436-9445	7.7	
239	Surface passivation of germanium by atomic layer deposited Al2O3 nanolayers. <i>Journal of Materials Research</i> , 2021 , 36, 571-581	2.5	8
238	Phase separation of VO2 and SiO2 on SiO2-Coated float glass yields robust thermochromic coating with unrivalled optical properties. <i>Solar Energy Materials and Solar Cells</i> , 2021 , 230, 111238	6.4	2
237	Novel microreactor and generic model catalyst platform for the study of fast temperature pulsed operation ICO oxidation rate enhancement on Pt. <i>Chemical Engineering Journal</i> , 2021 , 425, 131559	14.7	2
236	Atomic-layer-deposited Al-doped zinc oxide as a passivating conductive contacting layer for n+-doped surfaces in silicon solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2021 , 233, 111386	6.4	10

(2020-2021)

235	Conformal Growth of Nanometer-Thick Transition Metal Dichalcogenide TiS -NbS Heterostructures over 3D Substrates by Atomic Layer Deposition: Implications for Device Fabrication. <i>ACS Applied Nano Materials</i> , 2021 , 4, 514-521	5.6	3
234	Probing Lattice Dynamics and Electronic Resonances in Hexagonal Ge and SiGe Alloys in Nanowires by Raman Spectroscopy. <i>ACS Nano</i> , 2020 , 14, 6845-6856	16.7	11
233	Ballistic Phonons in Ultrathin Nanowires. <i>Nano Letters</i> , 2020 , 20, 2703-2709	11.5	17
232	Extraction of Dzyaloshinskii-Moriya interaction from propagating spin waves. <i>Physical Review B</i> , 2020 , 101,	3.3	9
231	Large area, patterned growth of 2D MoS and lateral MoS-WS heterostructures for nano- and opto-electronic applications. <i>Nanotechnology</i> , 2020 , 31, 255603	3.4	28
230	Atomic layer deposition of Nb-doped TiO2: Dopant incorporation and effect of annealing. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2020 , 38, 022408	2.9	5
229	Kinetic Control of Morphology and Composition in Ge/GeSn Core/Shell Nanowires. <i>ACS Nano</i> , 2020 , 14, 2445-2455	16.7	12
228	Editorial Expression of Concern: Quantized Majorana conductance. <i>Nature</i> , 2020 , 581, E4	50.4	6
227	Area-Selective Atomic Layer Deposition of Two-Dimensional WS Nanolayers 2020 , 2, 511-518		24
226	Direct-bandgap emission from hexagonal Ge and SiGe alloys. <i>Nature</i> , 2020 , 580, 205-209	50.4	124
226	Direct-bandgap emission from hexagonal Ge and SiGe alloys. <i>Nature</i> , 2020 , 580, 205-209 In-plane selective area InSbAl nanowire quantum networks. <i>Communications Physics</i> , 2020 , 3,	50.4	124
225	In-plane selective area InSbAl nanowire quantum networks. <i>Communications Physics</i> , 2020 , 3, Full characterization and modeling of graded interfaces in a high lattice-mismatch axial nanowire	5.4	18
225	In-plane selective area InSbAl nanowire quantum networks. <i>Communications Physics</i> , 2020 , 3, Full characterization and modeling of graded interfaces in a high lattice-mismatch axial nanowire heterostructure. <i>Physical Review Materials</i> , 2020 , 4, Precise ion energy control with tailored waveform biasing for atomic scale processing. <i>Journal of</i>	5.4	18
225 224 223	In-plane selective area InSbAl nanowire quantum networks. <i>Communications Physics</i> , 2020 , 3, Full characterization and modeling of graded interfaces in a high lattice-mismatch axial nanowire heterostructure. <i>Physical Review Materials</i> , 2020 , 4, Precise ion energy control with tailored waveform biasing for atomic scale processing. <i>Journal of Applied Physics</i> , 2020 , 128, 213301 Probing the Origin and Suppression of Vertically Oriented Nanostructures of 2D WS Layers. <i>ACS</i>	5·4 3·2 2·5	18 2 5
225 224 223	In-plane selective area InSbAl nanowire quantum networks. <i>Communications Physics</i> , 2020 , 3, Full characterization and modeling of graded interfaces in a high lattice-mismatch axial nanowire heterostructure. <i>Physical Review Materials</i> , 2020 , 4, Precise ion energy control with tailored waveform biasing for atomic scale processing. <i>Journal of Applied Physics</i> , 2020 , 128, 213301 Probing the Origin and Suppression of Vertically Oriented Nanostructures of 2D WS Layers. <i>ACS Applied Materials & Description of Materials & De</i>	5·4 3·2 2·5	18 2 5
225 224 223 222	In-plane selective area InSbAl nanowire quantum networks. <i>Communications Physics</i> , 2020 , 3, Full characterization and modeling of graded interfaces in a high lattice-mismatch axial nanowire heterostructure. <i>Physical Review Materials</i> , 2020 , 4, Precise ion energy control with tailored waveform biasing for atomic scale processing. <i>Journal of Applied Physics</i> , 2020 , 128, 213301 Probing the Origin and Suppression of Vertically Oriented Nanostructures of 2D WS Layers. <i>ACS Applied Materials & Diffusion-Induced Superconductors in Ge-Si Nanowires. Nano Letters</i> , 2020 , 20, 122-130 Atomic layer deposition of ruthenium using an ABC-type process: Role of oxygen exposure during	5.4 3.2 2.5 9.5	18 2 5 14 10

217	Synthesis of edge-enriched WS2 on high surface area WS2 framework by atomic layer deposition for electrocatalytic hydrogen evolution reaction. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films,</i> 2020 , 38, 062201	2.9	2
216	Atomic Layer Deposition of Al-Doped MoS: Synthesizing a p-type 2D Semiconductor with Tunable Carrier Density. <i>ACS Applied Nano Materials</i> , 2020 , 3, 10200-10208	5.6	7
215	Understanding the Film Formation Kinetics of Sequential Deposited Narrow-Bandgap PbBn Hybrid Perovskite Films. <i>Advanced Energy Materials</i> , 2020 , 10, 2000566	21.8	18
214	Plasma-Assisted ALD of Highly Conductive HfNx: On the Effect of Energetic Ions on Film Microstructure. <i>Plasma Chemistry and Plasma Processing</i> , 2020 , 40, 697-712	3.6	6
213	Strain engineering in Ge/GeSn core/shell nanowires. <i>Applied Physics Letters</i> , 2019 , 115, 113102	3.4	14
212	21.6%-Efficient Monolithic Perovskite/Cu(In,Ga)Se2 Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces. <i>ACS Energy Letters</i> , 2019 , 4, 583-590	20.1	106
211	Area-Selective Atomic Layer Deposition of ZnO by Area Activation Using Electron Beam-Induced Deposition. <i>Chemistry of Materials</i> , 2019 , 31, 1250-1257	9.6	43
21 0	Area-Selective Deposition of Ruthenium by Combining Atomic Layer Deposition and Selective Etching. <i>Chemistry of Materials</i> , 2019 , 31, 3878-3882	9.6	46
209	Phonon Engineering in Twinning Superlattice Nanowires. <i>Nano Letters</i> , 2019 , 19, 4702-4711	11.5	19
208	Edge-Site Nanoengineering of WS by Low-Temperature Plasma-Enhanced Atomic Layer Deposition for Electrocatalytic Hydrogen Evolution. <i>Chemistry of Materials</i> , 2019 , 31, 5104-5115	9.6	35
207	Boosting the Performance of WO3/n-Si Heterostructures for Photoelectrochemical Water Splitting: from the Role of Si to Interface Engineering. <i>Advanced Energy Materials</i> , 2019 , 9, 1900940	21.8	28
206	Electrochemistry of Sputtered Hematite Photoanodes: A Comparison of Metallic DC versus Reactive RF Sputtering. <i>ACS Omega</i> , 2019 , 4, 9262-9270	3.9	4
205	High Mobility Stemless InSb Nanowires. <i>Nano Letters</i> , 2019 , 19, 3575-3582	11.5	18
204	Sunlight-Fueled, Low-Temperature Ru-Catalyzed Conversion of CO and H to CH with a High Photon-to-Methane Efficiency. <i>ACS Omega</i> , 2019 , 4, 7369-7377	3.9	18
203	Hexagonal silicon grown from higher order silanes. <i>Nanotechnology</i> , 2019 , 30, 295602	3.4	6
202	Transition in layer structure of atomic/molecular layer deposited ZnO-zincone multilayers. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2019 , 37, 040602	2.9	9
201	Low-Temperature Phase-Controlled Synthesis of Titanium Di- and Tri-sulfide by Atomic Layer Deposition. <i>Chemistry of Materials</i> , 2019 , 31, 9354-9362	9.6	15
200	Selective-area chemical beam epitaxy of in-plane InAs one-dimensional channels grown on InP(001), InP(111)B, and InP(011) surfaces. <i>Physical Review Materials</i> , 2019 , 3,	3.2	26

199	Bottom-Up Grown 2D InSb Nanostructures. Advanced Materials, 2019, 31, e1808181	24	16
198	Polarized Raman spectroscopy to elucidate the texture of synthesized MoS. <i>Nanoscale</i> , 2019 , 11, 2286	0- 2 2 / 87	08
197	Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 12532-12543	7.1	40
196	Chemical Analysis of the Interface between Hybrid Organic-Inorganic Perovskite and Atomic Layer Deposited AlO. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 5526-5535	9.5	28
195	Low-temperature plasma-enhanced atomic layer deposition of 2-D MoS: large area, thickness control and tuneable morphology. <i>Nanoscale</i> , 2018 , 10, 8615-8627	7.7	63
194	Low resistivity HfNx grown by plasma-assisted ALD with external rf substrate biasing. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 3917-3926	7.1	25
193	Dopant Distribution in Atomic Layer Deposited ZnO:Al Films Visualized by Transmission Electron Microscopy and Atom Probe Tomography. <i>Chemistry of Materials</i> , 2018 , 30, 1209-1217	9.6	18
192	Shape and structural motifs control of MgTi bimetallic nanoparticles using hydrogen and methane as trace impurities. <i>Nanoscale</i> , 2018 , 10, 1297-1307	7.7	4
191	Efficient Green Emission from Wurtzite Al InP Nanowires. <i>Nano Letters</i> , 2018 , 18, 3543-3549	11.5	14
190	Surface Fluorination of ALD TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701456	4.6	20
189	Bottom-up meets top-down: tailored raspberry-like FeO-Pt nanocrystal superlattices. <i>Nanoscale</i> , 2018 , 10, 5859-5863	7.7	3
188	Quantized Majorana conductance. <i>Nature</i> , 2018 , 556, 74-79	50.4	382
187	Tuning Material Properties of Oxides and Nitrides by Substrate Biasing during Plasma-Enhanced Atomic Layer Deposition on Planar and 3D Substrate Topographies. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 13158-13180	9.5	59
186	Critical strain for Sn incorporation into spontaneously graded Ge/GeSn core/shell nanowires. <i>Nanoscale</i> , 2018 , 10, 7250-7256	7.7	24
185	Flow Cell Coupled Dynamic Light Scattering for Real-Time Monitoring of Nanoparticle Size during Liquid Phase Bottom-Up Synthesis. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 108	2.6	4
184	Low-Temperature Plasma-Assisted Atomic-Layer-Deposited SnO as an Electron Transport Layer in Planar Perovskite Solar Cells. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 30367-30378	9.5	59
183	Spin-Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas. <i>Nano Letters</i> , 2018 , 18, 6483-6488	11.5	14
182	Isotropic Atomic Layer Etching of ZnO Using Acetylacetone and O Plasma. <i>ACS Applied Materials</i> & Samp; Interfaces, 2018, 10, 38588-38595	9.5	21

181	Qualification of an Ultrasonic Instrument for Real-Time Monitoring of Size and Concentration of Nanoparticles during Liquid Phase Bottom-Up Synthesis. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 1064	2.6	1
180	Physical and Chemical Defects in WO3 Thin Films and Their Impact on Photoelectrochemical Water Splitting. <i>ACS Applied Energy Materials</i> , 2018 , 1, 5887-5895	6.1	33
179	Atomic-layer deposited Nb2O5 as transparent passivating electron contact for c-Si solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 184, 98-104	6.4	41
178	Twofold origin of strain-induced bending in core-shell nanowires: the GaP/InGaP case. <i>Nanotechnology</i> , 2018 , 29, 315703	3.4	9
177	Decoupling high surface recombination velocity and epitaxial growth for silicon passivation layers on crystalline silicon. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 065305	3	4
176	Towards the implementation of atomic layer deposited In2O3:H in silicon heterojunction solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 163, 43-50	6.4	22
175	Plasma-assisted atomic layer deposition of conformal Pt films in high aspect ratio trenches. <i>Journal of Chemical Physics</i> , 2017 , 146, 052818	3.9	15
174	Atomic layer deposition of HfO2 using HfCp(NMe2)3 and O2 plasma. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2017 , 35, 01B130	2.9	19
173	Uniform Atomic Layer Deposition of AlO on Graphene by Reversible Hydrogen Plasma Functionalization. <i>Chemistry of Materials</i> , 2017 , 29, 2090-2100	9.6	42
172	Plasma-assisted atomic layer deposition of HfNx: Tailoring the film properties by the plasma gas composition. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2017 , 35, 01B12	9 ^{2.9}	8
171	Boosting Hole Mobility in Coherently Strained [110]-Oriented Ge-Si Core-Shell Nanowires. <i>Nano Letters</i> , 2017 , 17, 2259-2264	11.5	36
170	Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 30-55	5.8	114
169	Growth and Optical Properties of Direct Band Gap Ge/GeSn Core/Shell Nanowire Arrays. <i>Nano Letters</i> , 2017 , 17, 1538-1544	11.5	59
168	Atomic Layer Deposition of InO:H from InCp and HO/O: Microstructure and Isotope Labeling Studies. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 592-601	9.5	12
167	Electrically conductive coatings consisting of Ag-decorated cellulose nanocrystals. <i>Cellulose</i> , 2017 , 24, 2191-2204	5.5	23
166	Synthesis of single-walled carbon nanotubes from atomic-layer-deposited Co3O4 and Co3O4/Fe2O3 catalyst films. <i>Carbon</i> , 2017 , 121, 389-398	10.4	12
165	Atomic layer deposition of high-mobility hydrogen-doped zinc oxide. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 173, 111-119	6.4	34
164	Dynamic reconfiguration of van der Waals gaps within GeTe-SbTe based superlattices. <i>Nanoscale</i> , 2017 , 9, 8774-8780	7.7	57

163	Microscopic studies of polycrystalline nanoparticle growth in free space. <i>Journal of Crystal Growth</i> , 2017 , 467, 137-144	1.6	2
162	Improved structural and electrical properties in native Sb2Te3/GexSb2Te3+x van der Waals superlattices due to intermixing mitigation. <i>APL Materials</i> , 2017 , 5, 026107	5.7	19
161	Protecting patches in colloidal synthesis of Au semishells. <i>Chemical Communications</i> , 2017 , 53, 3898-390	05 .8	4
160	Single-Crystalline Hexagonal Silicon-Germanium. <i>Nano Letters</i> , 2017 , 17, 85-90	11.5	45
159	Atomic layer deposition of highly dispersed Pt nanoparticles on a high surface area electrode backbone for electrochemical promotion of catalysis. <i>Electrochemistry Communications</i> , 2017 , 84, 40-44	5.1	14
158	(Invited) Area-Selective Atomic Layer Deposition: Role of Surface Chemistry. <i>ECS Transactions</i> , 2017 , 80, 39-48	1	9
157	Atomic-layer deposited passivation schemes for c-Si solar cells 2017 ,		2
156	Epitaxy of advanced nanowire quantum devices. <i>Nature</i> , 2017 , 548, 434-438	50.4	192
155	Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited AlO with PO Interlayer. <i>Nano Letters</i> , 2017 , 17, 6287-6294	11.5	52
154	Crystal Phase Quantum Well Emission with Digital Control. <i>Nano Letters</i> , 2017 , 17, 6062-6068	11.5	23
153	Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks. <i>Applied Physics Letters</i> , 2017 , 110, 263106	3.4	12
152	The Influence of Particle Size Distribution and Shell Imperfections on the Plasmon Resonance of Au and Ag Nanoshells. <i>Plasmonics</i> , 2017 , 12, 929-945	2.4	15
151	High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. <i>Energy and Environmental Science</i> , 2017 , 10, 91-100	35.4	184
150	Synthesis of Polystyrene?Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches. <i>Polymers</i> , 2017 , 9,	4.5	5
149	Synthesis and Characterization of Hybrid Particles Obtained in a One-Pot Process through Simultaneous Sol-Gel Reaction of (3-Mercaptopropyl)trimethoxysilane and Emulsion Polymerization of Styrene. <i>Colloids and Interfaces</i> , 2017 , 1, 7	3	3
148	The competing roles of i-ZnO in Cu(In,Ga)Se2 solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 157, 798-807	6.4	15
147	Influence of growth conditions on the performance of InP nanowire solar cells. <i>Nanotechnology</i> , 2016 , 27, 454003	3.4	8
146	Ordered Peierls distortion prevented at growth onset of GeTe ultra-thin films. <i>Scientific Reports</i> , 2016 , 6, 32895	4.9	15

145	Revisiting the Local Structure in Ge-Sb-Te based Chalcogenide Superlattices. <i>Scientific Reports</i> , 2016 , 6, 22353	4.9	57
144	Surface Infrared Spectroscopy during Low Temperature Growth of Supported Pt Nanoparticles by Atomic Layer Deposition. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 750-755	3.8	16
143	Functional nickel-based deposits synthesized by focused beam induced processing. <i>Nanotechnology</i> , 2016 , 27, 065303	3.4	7
142	Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation. <i>Nanotechnology</i> , 2016 , 27, 034001	3.4	70
141	Nucleation of microcrystalline silicon: on the effect of the substrate surface nature and nano-imprint topography. <i>Journal Physics D: Applied Physics</i> , 2016 , 49, 055205	3	1
140	Factors limiting the doping efficiency in atomic layer deposited ZnO:Al thin films: a dopant distribution study by transmission electron microscopy and atom probe tomography 2016 , 888-889		
139	Silicon heterojunction solar cell passivation in combination with nanocrystalline silicon oxide emitters. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 1932-1936	1.6	9
138	Receptor-Targeted Luminescent Silver Bionanoparticles. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 3030-3035	2.3	4
137	Pseudodirect to Direct Compositional Crossover in Wurtzite GaP/InGaP Core-Shell Nanowires. <i>Nano Letters</i> , 2016 , 16, 7930-7936	11.5	17
136	Atomic-layer deposited passivation schemes for c-Si solar cells 2016 ,		2
135	Atomic stacking and van-der-Waals bonding in GeTeBb2Te3 superlattices. <i>Journal of Materials Research</i> , 2016 , 31, 3115-3124	2.5	45
134	On the solid phase crystallization of In2O3:H transparent conductive oxide films prepared by atomic layer deposition. <i>Journal of Applied Physics</i> , 2016 , 120, 085314	2.5	20
133	Strong reduction of spectral heterogeneity in gold bipyramids for single-particle and single-molecule plasmon sensing. <i>Nanotechnology</i> , 2016 , 27, 024001	3.4	13
132	High-Yield Growth and Characterization of <100> InP p-n Diode Nanowires. <i>Nano Letters</i> , 2016 , 16, 307	1 -7 1.5	11
131	Gas phase grown silicon germanium nanocrystals. <i>Chemical Physics Letters</i> , 2016 , 661, 185-190	2.5	2
130	On the Growth, Percolation and Wetting of Silver Thin Films Grown by Atmospheric-Plasma Enhanced Spatial Atomic Layer Deposition. <i>ECS Transactions</i> , 2016 , 75, 129-142	1	5
129	Impurity and Defect Monitoring in Hexagonal Si and SiGe Nanocrystals. ECS Transactions, 2016, 75, 751-	760	5
128	Expanding Thermal Plasma Deposition of Al-Doped ZnO: On the Effect of the Plasma Chemistry on Film Growth Mechanisms. <i>Plasma Processes and Polymers</i> , 2016 , 13, 54-69	3.4	4

127	Hexagonal Silicon Realized. <i>Nano Letters</i> , 2015 , 15, 5855-60	11.5	118
126	Efficient water reduction with gallium phosphide nanowires. <i>Nature Communications</i> , 2015 , 6, 7824	17.4	106
125	Asymmetric magnetic bubble expansion under in-plane field in Pt/Co/Pt: Effect of interface engineering. <i>Physical Review B</i> , 2015 , 91,	3.3	87
124	Encapsulation method for atom probe tomography analysis of nanoparticles. <i>Ultramicroscopy</i> , 2015 , 159 Pt 2, 420-6	3.1	33
123	Cracking the Si Shell Growth in Hexagonal GaP-Si Core-Shell Nanowires. <i>Nano Letters</i> , 2015 , 15, 2974-9	11.5	20
122	Interface formation of two- and three-dimensionally bonded materials in the case of GeTe-Sb I ell superlattices. <i>Nanoscale</i> , 2015 , 7, 19136-43	7.7	125
121	Correlative transmission electron microscopy and electrical properties study of switchable phase-change random access memory line cells. <i>Journal of Applied Physics</i> , 2015 , 117, 064504	2.5	5
120	Highly porous, ultra-low refractive index coatings produced through random packing of silicated cellulose nanocrystals. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2015 , 487, 1-8	5.1	17
119	Exploring Crystal Phase Switching in GaP Nanowires. <i>Nano Letters</i> , 2015 , 15, 8062-9	11.5	47
118	Waveguide Nanowire Superconducting Single-Photon Detectors Fabricated on GaAs and the Study of Their Optical Properties. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2015 , 21, 1-10	3.8	157
117	p-type nc-SiOx:H emitter layer for silicon heterojunction solar cells grown by rf-PECVD. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1770, 7-12		1
116	Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition. <i>Nanotechnology</i> , 2015 , 26, 094002	3.4	55
115	Atomic layer deposition of B-doped ZnO using triisopropyl borate as the boron precursor and comparison with Al-doped ZnO. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3095-3107	7.1	40
114	Nitrogen-doping of bulk and nanotubular TiO2 photocatalysts by plasma-assisted atomic layer deposition. <i>Applied Surface Science</i> , 2015 , 330, 476-486	6.7	23
113	Electrocatalytic activity of atomic layer deposited PtRu catalysts onto N-doped carbon nanotubes. Journal of Catalysis, 2014 , 311, 481-486	7.3	49
112	Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts. <i>Nano Letters</i> , 2014 , 14, 3715-9	11.5	100
111	Atomic Layer Deposition of Highly Transparent Platinum Counter Electrodes for Metal/Polymer Flexible Dye-Sensitized Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1300831	21.8	26
110	Rationally designed single-crystalline nanowire networks. <i>Advanced Materials</i> , 2014 , 26, 4875-9	24	55

109	Atomic Layer Deposition of High-Purity Palladium Films from Pd(hfac)2 and H2 and O2 Plasmas. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 8702-8711	3.8	52
108	Facile and Versatile Platform Approach for the Synthesis of Submicrometer-Sized Hybrid Particles with Programmable Size, Composition, and Architecture Comprising Organosiloxanes and/or Organosilsesquioxanes. <i>Chemistry of Materials</i> , 2014 , 26, 5718-5724	9.6	6
107	Compositional and Structural Analysis of Al-doped ZnO Multilayers by LEAP. <i>Microscopy and Microanalysis</i> , 2014 , 20, 526-527	0.5	2
106	Investigation of embedded perovskite nanoparticles for enhanced capacitor permittivities. <i>ACS Applied Materials & District Applied & Distr</i>	9.5	3
105	Glucose-functionalized polystyrene particles designed for selective deposition of silver on the surface. <i>RSC Advances</i> , 2014 , 4, 62878-62881	3.7	17
104	Plasma-Assisted Atomic Layer Deposition of PtOx from (MeCp)PtMe3 and O2 Plasma. <i>Chemical Vapor Deposition</i> , 2014 , 20, 258-268		11
103	Rational Design: Rationally Designed Single-Crystalline Nanowire Networks (Adv. Mater. 28/2014). <i>Advanced Materials</i> , 2014 , 26, 4908-4908	24	1
102	Reversible switching of InP nanowire growth direction by catalyst engineering. <i>Nano Letters</i> , 2013 , 13, 3802-6	11.5	95
101	Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition. <i>Journal of Applied Physics</i> , 2013 , 114, 024308	2.5	64
100	Formation and electronic properties of InSb nanocrosses. <i>Nature Nanotechnology</i> , 2013 , 8, 859-64	28.7	106
99	Efficiency enhancement of InP nanowire solar cells by surface cleaning. <i>Nano Letters</i> , 2013 , 13, 4113-7	11.5	119
98	High optical quality single crystal phase wurtzite and zincblende InP nanowires. <i>Nanotechnology</i> , 2013 , 24, 115705	3.4	50
97	Room Temperature Sensing of O2 and CO by Atomic Layer Deposition Prepared ZnO Films Coated with Pt Nanoparticles. <i>ECS Transactions</i> , 2013 , 58, 203-214	1	3
96	Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution. <i>Journal of Applied Physics</i> , 2013 , 113, 134306	2.5	35
95	Direct band gap wurtzite gallium phosphide nanowires. <i>Nano Letters</i> , 2013 , 13, 1559-63	11.5	230
94	Influence of Oxygen Exposure on the Nucleation of Platinum Atomic Layer Deposition: Consequences for Film Growth, Nanopatterning, and Nanoparticle Synthesis. <i>Chemistry of Materials</i> , 2013 , 25, 1905-1911	9.6	112
93	Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis. <i>Nanoscale</i> , 2013 , 5, 5375-83	7.7	46
92	Direct-Write Atomic Layer Deposition of High-Quality Pt Nanostructures: Selective Growth Conditions and Seed Layer Requirements. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 10788-10798	3.8	53

(2011-2013)

91	Crystallization Study by Transmission Electron Microscopy of SrTiO3 Thin Films Prepared by Plasma-Assisted ALD. <i>ECS Transactions</i> , 2013 , 50, 69-77	1	2
90	Crystallization Study by Transmission Electron Microscopy of SrTiO3Thin Films Prepared by Plasma-Assisted ALD. <i>ECS Journal of Solid State Science and Technology</i> , 2013 , 2, N120-N124	2	10
89	ALD of SrTiO3 and Pt for Pt/SrTiO3/Pt MIM Structures: Growth and Crystallization Study. <i>ECS Transactions</i> , 2013 , 58, 153-162	1	3
88	Growth and optical properties of axial hybrid III-V/silicon nanowires. <i>Nature Communications</i> , 2012 , 3, 1266	17.4	92
87	Improved conductivity of aluminum-doped ZnO: The effect of hydrogen diffusion from a hydrogenated amorphous silicon capping layer. <i>Journal of Applied Physics</i> , 2012 , 111, 063715	2.5	9
86	Controlling the resistivity gradient in aluminum-doped zinc oxide grown by plasma-enhanced chemical vapor deposition. <i>Journal of Applied Physics</i> , 2012 , 112, 043708	2.5	9
85	NanostructureBroperty relations for phase-change random access memory (PCRAM) line cells. <i>Physica Status Solidi (B): Basic Research</i> , 2012 , 249, 1972-1977	1.3	7
84	Bright single-photon sources in bottom-up tailored nanowires. <i>Nature Communications</i> , 2012 , 3, 737	17.4	317
83	Supported Core/Shell Bimetallic Nanoparticles Synthesis by Atomic Layer Deposition. <i>Chemistry of Materials</i> , 2012 , 24, 2973-2977	9.6	132
82	Position-controlled [100] InP nanowire arrays. Applied Physics Letters, 2012, 100, 053107	3.4	37
81	Real time in situ spectroscopic ellipsometry of the growth and plasmonic properties of au nanoparticles on SiO2. <i>Nano Research</i> , 2012 , 5, 513-520	10	34
80	From InSb nanowires to nanocubes: looking for the sweet spot. <i>Nano Letters</i> , 2012 , 12, 1794-8	11.5	102
79	In situ crystallization kinetics studies of plasma-deposited, hydrogenated amorphous silicon layers. <i>Journal of Applied Physics</i> , 2012 , 111, 033508	2.5	9
78	Direct measurement of the near-field super resolved focused spot in InSb. Optics Express, 2012, 20, 104	2 63 37	18
77	Solid-phase crystallization of ultra high growth rate amorphous silicon films. <i>Journal of Applied Physics</i> , 2012 , 111, 103510	2.5	8
76	The role of surface energies and chemical potential during nanowire growth. <i>Nano Letters</i> , 2011 , 11, 1259-64	11.5	87
75	Enhanced field-driven domain-wall motion in Pt/Co68B32/Pt strips. <i>Applied Physics Letters</i> , 2011 , 98, 132502	3.4	17
	Plasma-Assisted Deposition of Au/SiO2 Multi-layers as Surface Plasmon Resonance-Based		

73	Formation of wurtzite InP nanowires explained by liquid-ordering. <i>Nano Letters</i> , 2011 , 11, 44-8	11.5	21
72	Crystal structure transfer in core/shell nanowires. <i>Nano Letters</i> , 2011 , 11, 1690-4	11.5	82
71	Controlling the fixed charge and passivation properties of Si(100)/Al2O3 interfaces using ultrathin SiO2 interlayers synthesized by atomic layer deposition. <i>Journal of Applied Physics</i> , 2011 , 110, 093715	2.5	124
70	III-Phospide Nanowires 2011 , 43-67		
69	Generic nano-imprint process for fabrication of nanowire arrays. <i>Nanotechnology</i> , 2010 , 21, 065305	3.4	64
68	Detection of the Presence of Gold Nanoparticles in Organs by Transmission Electron Microscopy. <i>Materials</i> , 2010 , 3, 4681-4694	3.5	29
67	Surface passivated InAs/InP core/shell nanowires. Semiconductor Science and Technology, 2010, 25, 024	01.8	85
66	Paired twins and [112] morphology in GaP nanowires. <i>Nano Letters</i> , 2010 , 10, 2349-56	11.5	39
65	Zirconia thin film preparation by wet chemical methods at low temperature. <i>Thin Solid Films</i> , 2010 , 519, 630-634	2.2	14
64	Quantitative prediction of junction leakage in bulk-technology CMOS devices. <i>Solid-State Electronics</i> , 2010 , 54, 243-251	1.7	20
63	Growth of scandium aluminum nitride nanowires on ScN(111) films on 6H-SiC substrates by HVPE. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2009 , 206, 2809-2815	1.6	4
62	Orientation-dependent optical-polarization properties of single quantum dots in nanowires. <i>Small</i> , 2009 , 5, 2134-8	11	30
61	ScAlN nanowires: A cathodoluminescence study. <i>Journal of Crystal Growth</i> , 2009 , 311, 3147-3151	1.6	13
60	Selective excitation and detection of spin states in a single nanowire quantum dot. <i>Nano Letters</i> , 2009 , 9, 1989-93	11.5	73
59	Zinc incorporation via the vapor-liquid-solid mechanism into InP nanowires. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4578-9	16.4	38
58	Dreidimensionale Materialanalysen im Nanometerbereich. <i>Nachrichten Aus Der Chemie</i> , 2009 , 57, 50-52	0.1	
57	Twinning superlattices in indium phosphide nanowires. <i>Nature</i> , 2008 , 456, 369-72	50.4	566
56	Ultrahigh Capacitance Density for Multiple ALD-Grown MIM Capacitor Stacks in 3-D Silicon. <i>IEEE Electron Device Letters</i> , 2008 , 29, 740-742	4.4	104

(2006-2008)

55	Epitaxial Growth of III-V Nanowires on Group IV Substrates. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1068, 1		7
54	F+ implants in crystalline Si: the Si interstitial contribution. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1070, 1		
53	Evolution of fluorine and boron profiles during annealing in crystalline Si. <i>Journal of Vacuum Science</i> & <i>Technology B</i> , 2008 , 26, 377		3
52	Si interstitial contribution of F+ implants in crystalline Si. <i>Journal of Applied Physics</i> , 2008 , 103, 093538	2.5	1
51	Three-dimensional morphology of GaP-GaAs nanowires revealed by transmission electron microscopy tomography. <i>Nano Letters</i> , 2007 , 7, 3051-5	11.5	79
50	Remote p-doping of InAs nanowires. <i>Nano Letters</i> , 2007 , 7, 1144-8	11.5	70
49	Single quantum dot nanowire LEDs. <i>Nano Letters</i> , 2007 , 7, 367-71	11.5	310
48	Epitaxial Growth of III-V Nanowires on Group IV Substrates. MRS Bulletin, 2007, 32, 117-122	3.2	87
47	Analysis of the Degradation Mechanism during Repeated Overwrite of Phase-Change Discs. <i>Japanese Journal of Applied Physics</i> , 2007 , 46, 1037-1041	1.4	
46	Interface study on heterostructured GaP-GaAs nanowires. <i>Nanotechnology</i> , 2006 , 17, 4010-3	3.4	56
45	Characterization of Laminated CeO[sub 2] HfO[sub 2] High-k Gate Dielectrics Grown by Pulsed Laser Deposition. <i>Journal of the Electrochemical Society</i> , 2006 , 153, F233	3.9	11
44	Epitaxial III-V Nanowires on Silicon for Vertical Devices. <i>ECS Transactions</i> , 2006 , 3, 415-423	1	1
43	Laminated CeO2/HfO2 High-K Gate Dielectrics Grown by Pulsed Laser Deposition in Reducing Ambient. <i>ECS Transactions</i> , 2006 , 3, 521-533	1	2
42	Growth kinetics of heterostructured GaP-GaAs nanowires. <i>Journal of the American Chemical Society</i> , 2006 , 128, 1353-9	16.4	171
41	Position-controlled epitaxial IIII nanowires on silicon. <i>Nanotechnology</i> , 2006 , 17, S271-S275	3.4	107
40	Dedicated FIB Preparation for TEM Cross-section Samples of Nanowires Grown Vertically on Silicon Substrates. <i>Microscopy and Microanalysis</i> , 2006 , 12, 504-505	0.5	
39	Electrical and structural characterization of PLD grown CeO2HfO2 laminated high-k gate dielectrics. <i>Materials Science in Semiconductor Processing</i> , 2006 , 9, 1061-1064	4.3	9
38	In situ transmission electron microscopy observations of individually selected freestanding carbon nanotubes during field emission. <i>Ultramicroscopy</i> , 2006 , 106, 902-8	3.1	7

37	Cross-sectional studies of epitaxial growth of InP and GaP nanowires on Si and Ge 2005, 295-298		2
36	Low-temperature diffusion of high-concentration phosphorus in silicon, a preferential movement toward the surface. <i>Applied Physics Letters</i> , 2005 , 86, 081917	3.4	28
35	Advanced PMOS Device Architecture for Highly-Doped Ultra-Shallow Junctions. <i>Japanese Journal of Applied Physics</i> , 2004 , 43, 1778-1783	1.4	3
34	Thickness and composition of ultrathin SiO2 layers on Si. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2004 , 22, 1572-1578	2.9	9
33	Transmission electron microscopy specimen holder for simultaneous in situ heating and electrical resistance measurements. <i>Review of Scientific Instruments</i> , 2004 , 75, 426-429	1.7	4
32	In situ transmission electron microscopy analysis of electron beam induced crystallization of amorphous marks in phase-change materials. <i>Journal of Applied Physics</i> , 2004 , 96, 3193-3198	2.5	23
31	Characterization of Thermal and Electrical Stability of MOCVD HfO[sub 2]-HfSiO[sub 4] Dielectric Layers with Polysilicon Electrodes for Advanced CMOS Technologies. <i>Journal of the Electrochemical Society</i> , 2004 , 151, G870	3.9	8
30	HfSiO[sub 4] Dielectric Layers Deposited by ALD Using HfCl[sub 4] and NH[sub 2](CH[sub 2])[sub 3]Si(OC[sub 2]H[sub 5])[sub 3] Precursors. <i>Journal of the Electrochemical Society</i> , 2004 , 151, C716	3.9	25
29	Epitaxial growth of InP nanowires on germanium. <i>Nature Materials</i> , 2004 , 3, 769-73	27	168
28	Critical review of the current status of thickness measurements for ultrathin SiO2 on Si Part V: Results of a CCQM pilot study. <i>Surface and Interface Analysis</i> , 2004 , 36, 1269-1303	1.5	130
27	Electron emission from individual nitrogen-doped multi-walled carbon nanotubes. <i>Chemical Physics Letters</i> , 2004 , 396, 126-130	2.5	42
26	Island growth in the atomic layer deposition of zirconium oxide and aluminum oxide on hydrogen-terminated silicon: Growth mode modeling and transmission electron microscopy. Journal of Applied Physics, 2004, 96, 4878-4889	2.5	121
25	Structural Characterization of Mesoporous Organosilica Films for Ultralow-kDielectrics. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 4280-4289	3.4	104
24	Synthesis of InP nanotubes. <i>Journal of the American Chemical Society</i> , 2003 , 125, 3440-1	16.4	123
23	Monocrystalline InP Nanotubes. Materials Research Society Symposia Proceedings, 2003, 789, 127		
22	Explanation for the leakage current in polycrystalline-silicon thin-film transistors made by Ni-silicide mediated crystallization. <i>Applied Physics Letters</i> , 2002 , 81, 3404-3406	3.4	44
21	In situ electrical resistance measurements of Al-Ge films in the TEM using a modified heating holder. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 615, 611		1
20	Difference between blocking and NBl temperatures in the exchange biased Fe3O4/CoO system. <i>Physical Review Letters</i> , 2000 , 84, 6102-5	7.4	215

19	Mechanism of C60 crystal growth from the vapour. Journal of Crystal Growth, 1997, 172, 136-144	1.6	2
18	In situ topography of the (2 0 0) face of ?-caprolactam growing from the vapour phase. <i>Journal of Crystal Growth</i> , 1997 , 180, 284-292	1.6	1
17	On the hypomorphism of ADP crystals. <i>Journal of Crystal Growth</i> , 1996 , 160, 337-345	1.6	4
16	The stability of satellite faces on modulated crystals. <i>Journal of Physics Condensed Matter</i> , 1995 , 7, 936	9- <u>9</u> .884	1
15	Optical and atomic force microscopy studies of rhombohedral domains in C70 crystals. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1995 , 72, 1141-1	159	4
14	Morphology of modulated crystals. <i>Physica Status Solidi A</i> , 1994 , 146, 13-30		3
13	Hexagonal close-packed C60. Chemical Physics Letters, 1994, 219, 469-472	2.5	50
12	Low-temperature structure of solid C70. Chemical Physics Letters, 1994, 223, 323-328	2.5	50
11	A superspace description for the morphology of modulated crystals: An explanation for the occurrence of faces (hklm). <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1994 , 69, 69-82		8
10	Explanation for the occurrence of {hklm} faces on modulated crystals. Faraday Discussions, 1993, 95, 3	3.6	4
9	Structural phase transitions in C 70. Europhysics Letters, 1993, 21, 329-334	1.6	67
8	Lattice vibrations in crystalline C70. <i>Physical Review B</i> , 1993 , 47, 7610-7613	3.3	57
7	Structures and phase transitions in C60 and C70 fullerites. <i>Ultramicroscopy</i> , 1993 , 51, 168-188	3.1	18
6	New orientationally ordered low-temperature superstructure in high-purity C60. <i>Physical Review Letters</i> , 1992 , 69, 1065-1068	7.4	73
5	The structure of different phases of pure C70 crystals. <i>Chemical Physics</i> , 1992 , 166, 287-297	2.3	176
4	. Journal Physics D: Applied Physics, 1991 , 24, 186-198	3	10
3	Vicinal Si(111) surfaces studied by optical second-harmonic generation: Step-induced anisotropy and surface-bulk discrimination. <i>Physical Review B</i> , 1990 , 42, 9263-9266	3.3	72
2	Low Temperature Sunlight-Powered Reduction of CO2 to CO Using a Plasmonic Au/TiO2 Nanocatalyst. <i>ChemCatChem</i> ,	5.2	2

Growth-Related Formation Mechanism of I3-Type Basal Stacking Fault in Epitaxially Grown Hexagonal Ge-2H. *Advanced Materials Interfaces*,2102340

4.6