Yu-Lin Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/658244/publications.pdf Version: 2024-02-01

567281 610901 28 645 15 24 citations h-index g-index papers 28 28 28 723 docs citations times ranked citing authors all docs

YULLIN DONG

#	Article	IF	CITATIONS
1	Projections from the lateral parabrachial nucleus to the lateral and ventral lateral periaqueductal gray subregions mediate the itching sensation. Pain, 2021, 162, 1848-1863.	4.2	10
2	Projecting neurons in spinal dorsal horn send collateral projections to dorsal midline/intralaminar thalamic complex and parabrachial nucleus. Brain Research Bulletin, 2021, 169, 184-195.	3.0	7
3	A Neural Circuit from Thalamic Paraventricular Nucleus to Central Amygdala for the Facilitation of Neuropathic Pain. Journal of Neuroscience, 2020, 40, 7837-7854.	3.6	44
4	Suppression of histone deacetylases by SAHA relieves bone cancer pain in rats via inhibiting activation of glial cells in spinal dorsal horn and dorsal root ganglia. Journal of Neuroinflammation, 2020, 17, 125.	7.2	33
5	dmPFC-vlPAG projection neurons contribute to pain threshold maintenance and antianxiety behaviors. Journal of Clinical Investigation, 2020, 130, 6555-6570.	8.2	59
6	Collateral Projections from the Medullary Dorsal Horn to the Ventral Posteromedial Thalamic Nucleus and the Parafascicular Thalamic Nucleus in the Rat. Neuroscience, 2019, 410, 293-304.	2.3	2
7	XPro1595 ameliorates bone cancer pain in rats via inhibiting p38-mediated glial cell activation and neuroinflammation in the spinal dorsal horn. Brain Research Bulletin, 2019, 149, 137-147.	3.0	8
8	Endomorphin-2 Inhibits the Activity of the Spinoparabrachial Projection Neuron through Presynaptic Mechanisms in the Spinal Dorsal Horn in Rats. NeuroSignals, 2018, 26, 43-57.	0.9	5
9	Vesicular glutamate transporter isoforms: The essential players in the somatosensory systems. Progress in Neurobiology, 2018, 171, 72-89.	5.7	38
10	VGLUT1 or VGLUT2 mRNA-positive neurons in spinal trigeminal nucleus provide collateral projections to both the thalamus and the parabrachial nucleus in rats. Molecular Brain, 2018, 11, 22.	2.6	13
11	Inhibition of Histone Deacetylases Attenuates Morphine Tolerance and Restores MOR Expression in the DRG of BCP Rats. Frontiers in Pharmacology, 2018, 9, 509.	3.5	11
12	Inhibitory Effect of Endomorphin-2 Binding to the μ-Opioid Receptor in the Rat Pre-Bötzinger Complex on the Breathing Activity. Molecular Neurobiology, 2017, 54, 461-469.	4.0	15
13	Neuron-restrictive silencer factor–mediated downregulation of μ-opioid receptor contributes to the reduced morphine analgesia in bone cancer pain. Pain, 2017, 158, 879-890.	4.2	21
14	The synergistic effect of treatment with triptolide and MK-801 in the rat neuropathic pain model. Molecular Pain, 2017, 13, 174480691774656.	2.1	13
15	Endomorphins: Promising Endogenous Opioid Peptides for the Development of Novel Analgesics. NeuroSignals, 2017, 25, 98-116.	0.9	29
16	The analgesic effects of triptolide in the bone cancer pain rats via inhibiting the upregulation of HDACs in spinal glial cells. Journal of Neuroinflammation, 2017, 14, 213.	7.2	39
17	Collateral projections from the lateral parabrachial nucleus to the paraventricular thalamic nucleus and the central amygdaloid nucleus in the rat. Neuroscience Letters, 2016, 629, 245-250.	2.1	19
18	Mechanism Underlying the Analgesic Effect Exerted by Endomorphin-1 in the rat Ventrolateral Periaqueductal Gray. Molecular Neurobiology, 2016, 53, 2036-2053.	4.0	20

Yu-Lin Dong

#	Article	IF	CITATIONS
19	Astrocytic NDRG2 is involved in glucocorticoid-mediated diabetic mechanical allodynia. Diabetes Research and Clinical Practice, 2015, 108, 128-136.	2.8	7
20	Neurochemical properties of the synapses between the parabrachial nucleus-derived CGRP-positive axonal terminals and the GABAergic neurons in the lateral capsular division of central nucleus of amygdala. Molecular Neurobiology, 2015, 51, 105-118.	4.0	24
21	Does Dexmedetomidine as a Neuraxial Adjuvant Facilitate Better Anesthesia and Analgesia? A Systematic Review and Meta-Analysis. PLoS ONE, 2014, 9, e93114.	2.5	73
22	The analgesia effect of duloxetine on post-operative pain via intrathecal or intraperitoneal administration. Neuroscience Letters, 2014, 568, 6-11.	2.1	24
23	Activation of Extracellular Signal-Regulated Kinase1/2 in the Medial Prefrontal Cortex Contributes to Stress-Induced Hyperalgesia. Molecular Neurobiology, 2014, 50, 1013-1023.	4.0	17
24	Inhibiting Spinal Neuron-Astrocytic Activation Correlates with Synergistic Analgesia of Dexmedetomidine and Ropivacaine. PLoS ONE, 2014, 9, e92374.	2.5	17
25	Synergistic Analgesia of Duloxetine and Celecoxib in the Mouse Formalin Test: A Combination Analysis. PLoS ONE, 2013, 8, e76603.	2.5	30
26	Neurochemical Properties of the Synapses in the Pathways of Orofacial Nociceptive Reflexes. PLoS ONE, 2012, 7, e34435.	2.5	3
27	VGluT1- and GAD-immunoreactive terminals in synaptic contact with PAG-immunopositive neurons in principal sensory trigeminal nucleus of rat. Acta Pharmacologica Sinica, 2007, 28, 180-184.	6.1	2
28	Vesicular glutamate transporters, VGluT1 and VGluT2, in the trigeminal ganglion neurons of the rat, with special reference to coexpression. Journal of Comparative Neurology, 2003, 463, 212-220.	1.6	62