Hongbing Zhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6581986/publications.pdf

Version: 2024-02-01

126708 3,647 88 33 citations h-index papers

57 g-index 88 88 88 4668 docs citations times ranked citing authors all docs

143772

#	Article	IF	CITATIONS
1	Three-Dimensional Network Architecture with Hybrid Nanocarbon Composites Supporting Few-Layer MoS ₂ for Lithium and Sodium Storage. ACS Nano, 2018, 12, 1592-1602.	7.3	275
2	Nonlinear optical and optical limiting properties of graphene families. Applied Physics Letters, 2010, 96,	1.5	264
3	Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy and Environmental Science, 2020, 13, 2431-2440.	15.6	229
4	Fast Redox Kinetics in Biâ€Heteroatom Doped 3D Porous Carbon Nanosheets for Highâ€Performance Hybrid Potassiumâ€Ion Battery Capacitors. Advanced Energy Materials, 2019, 9, 1901533.	10.2	186
5	Construction of MOF-derived hollow Ni–Zn–Co–S nanosword arrays as binder-free electrodes for asymmetric supercapacitors with high energy density. Nanoscale, 2018, 10, 14171-14181.	2.8	124
6	Reliable and General Route to Inverse Opal Structured Nanohybrids of Carbonâ€Confined Transition Metal Sulfides Quantum Dots for Highâ€Performance Sodium Storage. Advanced Energy Materials, 2018, 8, 1801452.	10.2	118
7	FeS quantum dots embedded in 3D ordered macroporous carbon nanocomposite for high-performance sodium-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7, 1138-1148.	5.2	93
8	Giant optical limiting effect in Ormosil gel glasses doped with graphene oxide materials. Journal of Materials Chemistry C , 2013 , 1 , 6759 .	2.7	85
9	Metal-organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder-free electrodes for lithium-ion batteries. Chemical Engineering Journal, 2018, 354, 454-462.	6.6	84
10	MOF-Derived Hybrid Hollow Submicrospheres of Nitrogen-Doped Carbon-Encapsulated Bimetallic Ni–Co–S Nanoparticles for Supercapacitors and Lithium Ion Batteries. Inorganic Chemistry, 2019, 58, 3916-3924.	1.9	82
11	Selfâ€Assembling of Conductive Interlayerâ€Expanded WS ₂ Nanosheets into 3D Hollow Hierarchical Microflower Bud Hybrids for Fast and Stable Sodium Storage. Advanced Functional Materials, 2020, 30, 1907677.	7.8	82
12	Lightâ€Induced Reversible Selfâ€Assembly of Gold Nanoparticles Surfaceâ€Immobilized with Coumarin Ligands. Angewandte Chemie - International Edition, 2016, 55, 936-940.	7.2	81
13	Hierarchical Nanoreactor with Multiple Adsorption and Catalytic Sites for Robust Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 6849-6860.	7.3	70
14	Significant contribution of single atomic Mn implanted in carbon nanosheets to high-performance sodium–ion hybrid capacitors. Energy and Environmental Science, 2021, 14, 4564-4573.	15.6	66
15	Carbon-coated MoS1.5Te0.5 nanocables for efficient sodium-ion storage in non-aqueous dual-ion batteries. Nature Communications, 2022, 13, 663.	5.8	66
16	Enhanced nonlinear optical properties of nonzero-bandgap graphene materials in glass matrices. Journal of Materials Chemistry C, 2014, 2, 4121-4125.	2.7	60
17	Preparation of SiO2–wood composites by an ultrasonic-assisted sol–gel technique. Cellulose, 2014, 21, 4393-4403.	2.4	60
18	Supercapacitors Based on Reduced Graphene Oxide Nanofibers Supported Ni(OH) ₂ Nanoplates with Enhanced Electrochemical Performance. ACS Applied Materials & Diterfaces, 2016, 8, 22977-22987.	4.0	60

#	Article	IF	CITATIONS
19	Novel One-Dimensional Covalent Organic Framework as a H ⁺ Fluorescent Sensor in Acidic Aqueous Solution. ACS Applied Materials & Interfaces, 2021, 13, 1145-1151.	4.0	58
20	Direct Thermal Annealing Synthesis of Ordered Pt Alloy Nanoparticles Coated with a Thin N-Doped Carbon Shell for the Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 9355-9365.	5.5	54
21	Layer-by-layer stacked nanohybrids of N,S-co-doped carbon film modified atomic MoS ₂ nanosheets for advanced sodium dual-ion batteries. Journal of Materials Chemistry A, 2019, 7, 24271-24280.	5.2	52
22	Resorcinol–Formaldehyde Resin-Coated Prussian Blue Core–Shell Spheres and Their Derived Unique Yolk–Shell FeS ₂ @C Spheres for Lithium-Ion Batteries. Inorganic Chemistry, 2019, 58, 1330-1338.	1.9	52
23	Robust Lithium–Sulfur Batteries Enabled by Highly Conductive WSe ₂ â€Based Superlattices with Tunable Interlayer Space. Advanced Functional Materials, 2022, 32, .	7.8	51
24	Bimetallic CoNiS _x nanocrystallites embedded in nitrogen-doped carbon anchored on reduced graphene oxide for high-performance supercapacitors. Nanoscale, 2018, 10, 4051-4060.	2.8	50
25	Electric field-modulated data storage in bilayer InSe. Journal of Materials Chemistry C, 2017, 5, 12228-12234.	2.7	49
26	Generation of nitrogen-doped photoluminescent carbonaceous nanodots via the hydrothermal treatment of fish scales for the detection of hypochlorite. RSC Advances, 2015, 5, 44636-44641.	1.7	48
27	Construction of sugar gourd-like yolk-shell Ni–Mo–Co–S nanocage arrays for high-performance alkaline battery. Energy Storage Materials, 2020, 25, 105-113.	9.5	46
28	Dye-Modified Metal–Organic Framework as a Recyclable Luminescent Sensor for Nicotine Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution in Urine Solution and Urine Solution in U	4.0	45
29	Hierarchical Multicavity Nitrogenâ€Doped Carbon Nanospheres as Efficient Polyselenide Reservoir for Fast and Longâ€Life Sodiumâ€Selenium Batteries. Small, 2020, 16, e2005534.	5.2	44
30	Ultrathin manganese dioxide nanosheets grown on partially unzipped nitrogen-doped carbon nanotubes for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2017, 702, 236-243.	2.8	38
31	Water-soluble graphene sheets with large optical limiting response via non-covalent functionalization with polyacetylenes. Journal of Materials Chemistry, 2012, 22, 22624.	6.7	34
32	Bond-Energy-Integrated Descriptor for Oxygen Electrocatalysis of Transition Metal Oxides. Journal of Physical Chemistry Letters, 2018, 9, 3387-3391.	2.1	34
33	Broadband nonlinear optical and optical limiting effects of partially unzipped carbon nanotubes. Journal of Materials Chemistry C, 2015, 3, 9948-9954.	2.7	33
34	In situ confined conductive nickel cobalt sulfoselenide with tailored composition in graphitic carbon hollow structure for energy storage. Chemical Engineering Journal, 2018, 351, 678-687.	6.6	33
35	Homogeneous Polymerization of Self-standing Covalent Organic Framework Films with High Performance in Molecular Separation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41942-41949.	4.0	33
36	Engineering Hierarchical Co@N-Doped Carbon Nanotubes∫î±-Ni(OH) ₂ Heterostructures on Carbon Cloth Enabling High-Performance Aqueous Nickel–Zinc Batteries. ACS Applied Materials & Interfaces, 2021, 13, 22304-22313.	4.0	33

#	Article	IF	Citations
37	Pd Nanoclusters Supported by Amine-Functionalized Covalent Organic Frameworks for Benzyl Alcohol Oxidation. ACS Applied Nano Materials, 2020, 3, 6416-6422.	2.4	32
38	Carbon nanomaterials for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid: from one-dimensional to the quasi one-dimensional. Electrochimica Acta, 2016, 190, 40-48.	2.6	31
39	Metal-Organic Frameworks Derived Nanocomposites of Mixed-Valent MnO Nanoparticles In-Situ Grown on Ultrathin Carbon Sheets for High-Performance Supercapacitors and Lithium-Ion Batteries. Electrochimica Acta, 2017, 256, 63-72.	2.6	31
40	Fabricating novel high-performance thin-film composite forward osmosis membrane with designed sulfonated covalent organic frameworks as interlayer. Journal of Membrane Science, 2021, 635, 119476.	4.1	30
41	Self-supported VN arrays coupled with N-doped carbon nanotubes embedded with Co nanoparticles as a multifunctional sulfur host for lithium-sulfur batteries. Chemical Engineering Journal, 2022, 430, 132931.	6.6	27
42	Europium ion post-functionalized zirconium metal–organic frameworks as luminescent probes for effectively sensing hydrazine hydrate. RSC Advances, 2018, 8, 17471-17476.	1.7	26
43	Engineering One-Dimensional Bunched Ni–MoO ₂ @Co–CoO–NC Composite for Enhanced Lithium and Sodium Storage Performance. ACS Applied Energy Materials, 2020, 3, 9018-9027.	2.5	26
44	Tunable Contacts in Graphene/InSe van der Waals Heterostructures. Journal of Physical Chemistry C, 2020, 124, 23699-23706.	1.5	25
45	Facile Synthesis of P-Doped Carbon Nanosheets as Janus Electrodes of Advanced Potassium-Ion Hybrid Capacitor. ACS Applied Materials & Samp; Interfaces, 2021, 13, 29511-29521.	4.0	24
46	Improvement of wood properties by impregnation with TiO2via ultrasonic-assisted sol–gel process. RSC Advances, 2014, 4, 56355-56360.	1.7	23
47	An anthracene based conjugated triazine framework as a luminescent probe for selective sensing of p-nitroaniline and Fe(<scp>iii</scp>) ions. Materials Chemistry Frontiers, 2021, 5, 6568-6574.	3.2	23
48	Lightâ€Induced Reversible Selfâ€Assembly of Gold Nanoparticles Surfaceâ€Immobilized with Coumarin Ligands. Angewandte Chemie, 2016, 128, 948-952.	1.6	21
49	Regioregular and Regioirregular Poly(selenophene-perylene diimide) Acceptors for Polymer–Polymer Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 32397-32403.	4.0	21
50	A thin film of naphthalenediimide-based metal-organic framework with electrochromic properties. Journal of Colloid and Interface Science, 2021, 594, 73-79.	5.0	21
51	MOF-derived NiCo ₂ S ₄ and carbon hybrid hollow spheres compactly concatenated by electrospun carbon nanofibers as self-standing electrodes for aqueous alkaline Zn batteries. Journal of Materials Chemistry A, 2022, 10, 4100-4109.	5.2	21
52	Electrochemistry of partially unzipped carbon nanotubes. Electrochemistry Communications, 2014, 45, 95-98.	2.3	20
53	Interconnected Ni-Co sulfide nanosheet arrays grown on nickel foam as binder-free electrodes for supercapacitors with high areal capacitance. Journal of Alloys and Compounds, 2017, 721, 205-212.	2.8	20
54	A Tröger's base-derived microporous organic polymers containing pyrene units for selective adsorption of CO2 over N2 and CH4. Microporous and Mesoporous Materials, 2020, 294, 109870.	2.2	20

#	Article	IF	Citations
55	Hydrazoneâ€Linked Heptazine Polymeric Carbon Nitrides for Synergistic Visibleâ€Lightâ€Driven Catalysis. Chemistry - A European Journal, 2020, 26, 7358-7364.	1.7	20
56	Ultrasoundâ€assisted bulk synthesis of Cdsâ€PVK nanocomposites via RAFT polymerization. Journal of Polymer Science Part A, 2008, 46, 5702-5707.	2.5	19
57	Synthesizing Highly Crystalline Self-Standing Covalent Organic Framework Films through a Homogeneous–Floating–Concentrating Strategy for Molecular Separation. Chemistry of Materials, 2021, 33, 9413-9424.	3.2	19
58	Fundamental electrochemistry of three-dimensional graphene aerogels. RSC Advances, 2014, 4, 30689.	1.7	18
59	Layerâ€Tunable Nonlinear Optical Characteristics and Photocarrier Dynamics of 2D PdSe ₂ in Broadband Spectra. Small, 2021, 17, e2103938.	5.2	18
60	Carbon Nanotubes with Tailored Density of Electronic States for Electrochemical Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25793-25803.	4.0	15
61	A glucose biosensor based on partially unzipped carbon nanotubes. Talanta, 2015, 141, 66-72.	2.9	15
62	Elastic Anisotropy and Optic Isotropy in Black Phosphorene/Transition-Metal Trisulfide van der Waals Heterostructures. ACS Omega, 2019, 4, 4101-4108.	1.6	15
63	Diversified AIE and mechanochromic luminescence based on carbazole derivative decorated dicyanovinyl groups: effects of substitution sites and molecular packing. CrystEngComm, 2020, 22, 2166-2172.	1.3	15
64	A Permanent Porous Hydrogen-Bonded Framework with Room-Temperature Phosphorescence. Crystal Growth and Design, 2021, 21, 3420-3427.	1.4	13
65	High Mass Loading 3Dâ€Printed Sodiumâ€lon Hybrid Capacitors. Advanced Functional Materials, 2022, 32, .	7.8	13
66	Enhanced photocatalytic performance of black phosphorene by isoelectronic co-dopants. Inorganic Chemistry Frontiers, 2019, 6, 2369-2378.	3.0	12
67	Heptazine-based porous polymer for selective CO2 sorption and visible light photocatalytic oxidation of benzyl alcohol. Microporous and Mesoporous Materials, 2019, 282, 9-14.	2.2	12
68	Ultrathin δ-MnO2 nanosheets branched onto N-doped carbon nanotubes as binder-free cathode electrodes for aqueous zinc-ion batteries with a high areal capacity. Journal of Alloys and Compounds, 2022, 913, 165124.	2.8	12
69	Novel core-substituted naphthalene diimide-based conjugated polymers for electrochromic applications. Journal of Materials Chemistry C, 2021, 9, 16959-16965.	2.7	11
70	Rapid and Large-Scale Quality Assessment of Two-Dimensional MoS ₂ Using Sulfur Particles with Optical Visualization. Nano Letters, 2021, 21, 1260-1266.	4.5	10
71	Partially removing long branched alkyl side chains of regioregular conjugated backbone based diketopyrrolopyrrole polymer for improving field-effect mobility. Journal of Materials Chemistry C, 2018, 6, 13325-13330.	2.7	9
72	Switchable two-dimensional electrides: A first-principles study. Physical Review B, 2021, 103, .	1.1	9

#	Article	IF	CITATIONS
73	Impact of new skeletal isomerization in polymer semiconductors. Journal of Materials Chemistry C, 2019, 7, 10860-10867.	2.7	8
74	A lightweight and low-cost electrode for lithium-ion batteries derived from paper towel supported MOF arrays. Chemical Communications, 2020, 56, 5847-5850.	2.2	8
75	Construction of molybdenum vanadium oxide/nitride hybrid nanoplate arrays for aqueous zinc-ion batteries and reliable insights into the reaction mechanism. Journal of Materials Chemistry A, 2021, 9, 21313-21322.	5.2	8
76	A novel platform based on defect-rich knotted graphene nanotubes for detection of small biomolecules. Electrochimica Acta, 2016, 217, 47-54.	2.6	7
77	A series of near-infrared rare earth metal–organic frameworks based on a ketone functionalized aromatic tricarboxylate ligand. Inorganic Chemistry Communication, 2018, 92, 18-21.	1.8	7
78	Metal-organic framework-engaged synthesis of multicomponent MoO2@CoO-CoMoO4-NC hybrid nanorods as promising anode materials for lithium-ion batteries. Materials Letters, 2019, 254, 129-132.	1.3	7
79	Optimizing CO2 capture and separation in pyrene derived covalent triazine frameworks. European Polymer Journal, 2022, 171, 111215.	2.6	7
80	Electrochemistry of partially unzipped N-doped carbon nanotubes. Electrochemistry Communications, 2014, 48, 138-141.	2.3	6
81	Potassiumâ€lon Hybrid Capacitors: Fast Redox Kinetics in Biâ€Heteroatom Doped 3D Porous Carbon Nanosheets for Highâ€Performance Hybrid Potassiumâ€lon Battery Capacitors (Adv. Energy Mater. 42/2019). Advanced Energy Materials, 2019, 9, 1970167.	10.2	5
82	Manipulating the Position of Triplet Chromophores To Achieve a Dynamic Photoactivated Ultralong Organic Phosphorescence Effect. Journal of Physical Chemistry C, 2021, 125, 22848-22855.	1.5	5
83	Defect-mediated synthesis of Pt nanoparticles uniformly anchored on partially-unzipped carbon nanofibers for electrochemical biosensing. Journal of Alloys and Compounds, 2017, 709, 304-312.	2.8	4
84	Structure, crystallization, and performances of alkalineâ€earth boroaluminosilicate sealing glasses for SOFCs. Journal of the American Ceramic Society, 2021, 104, 2560-2570.	1.9	4
85	Synthesis of a Low-Cost Thiophene-Indoloquinoxaline Polymer Donor and Its Application to Polymer Solar Cells. Polymers, 2022, 14, 1554.	2.0	1
86	Mechanochemical synthesis of nonfullerene small molecular acceptors. Journal of Materials Chemistry $C,0,$	2.7	1
87	Crystal structure of 3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-1 <i>H</i> -purine-2,6-dione 4-hydroxybenzoic acid, C ₂₀ H ₂₄ N ₄ O ₆ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2020, 235, 599-600.	0.1	0
88	Novel Binary Ni-Based Mixed Metal–Organic Framework Nanosheets Materials and Their High Optical Power Limiting. ACS Omega, 2022, 7, 10429-10437.	1.6	0