John Clemens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6581740/publications.pdf Version: 2024-02-01

JOHN CLEMENS

#	Article	IF	CITATIONS
1	The enigmatic sources of I-type granites: The peritectic connexion. Lithos, 2011, 126, 174-181.	1.4	313
2	Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2ÂGPa. Contributions To Mineralogy and Petrology, 2007, 154, 91-110.	3.1	239
3	Models for Granitoid Evolution and Source Compositions. Journal of Geology, 1987, 95, 731-749.	1.4	217
4	Observations on the origins and ascent mechanisms of granitic magmas. Journal of the Geological Society, 1998, 155, 843-851.	2.1	120
5	S-type granites and their probable absence in southwestern North America. Geology, 1986, 14, 115.	4.4	110
6	Granites, Granulites, and Crustal Differentiation. , 1990, , 59-85.		108
7	Granitic melt viscosity and silicic magma dynamics in contrasting tectonic settings. Journal of the Geological Society, 1999, 156, 1057-1060.	2.1	108
8	Sources of post-orogenic calcalkaline magmas: The Arrochar and Garabal Hill–Glen Fyne complexes, Scotland. Lithos, 2009, 112, 524-542.	1.4	105
9	The Granulite — Granite Connexion. , 1990, , 25-36.		100
10	Origin of microgranular enclaves in granitoids: Equivocal Srâ€Nd Evidence From Hercynian Rocks in the Massif Central (France). Journal of Geophysical Research, 1990, 95, 17821-17828.	3.3	90
11	Chemical structure in granitic magmas – a signal from the source?. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2009, 100, 159-172.	0.3	83
12	The Importance of Residual Source Material (Restite) in Granite Petrogenesis: A Comment. Journal of Petrology, 1989, 30, 1313-1316.	2.8	58
13	The Tynong pluton, its mafic synplutonic sheets and igneous microgranular enclaves: the nature of the mantle connection in I-type granitic magmas. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	55
14	Granitic magma ascent and emplacement: neither diapirism nor neutral buoyancy. Geological Society Special Publication, 2000, 174, 1-19.	1.3	50
15	Origins of igneous microgranular enclaves in granites: the example of Central Victoria, Australia. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	44
16	Granitic magmas with I-type affinities, from mainly metasedimentary sources: the Harcourt batholith of southeastern Australia. Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	44
17	Inferring a deep-crustal source terrane from a high-level granitic pluton: the Strathbogie Batholith, Australia. Contributions To Mineralogy and Petrology, 2014, 168, 1.	3.1	43
18	Origins of co-existing diverse magmas in a felsic pluton: the Lysterfield Granodiorite, Australia. Contributions To Mineralogy and Petrology, 2014, 167, 1.	3.1	39

JOHN CLEMENS

#	Article	IF	CITATIONS
19	S-type ignimbrites with polybaric crystallisation histories: the Tolmie Igneous Complex, Central Victoria, Australia. Contributions To Mineralogy and Petrology, 2011, 162, 1315-1337.	3.1	38
20	Assembly of a zoned volcanic magma chamber from multiple magma batches: The Cerberean Cauldron, Marysville Igneous Complex, Australia. Lithos, 2012, 155, 272-288.	1.4	38
21	Granitic magmatism, from source to emplacement: a personal view. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 2012, 121, 107-136.	0.8	34
22	How deceptive are microstructures in granitic rocks? Answers from integrated physical theory, phase equilibrium, and direct observations. Contributions To Mineralogy and Petrology, 2018, 173, 62.	3.1	33
23	Volume and composition relationships between granites and their lower crustal source regions: An example from central Victoria, Australia. Australian Journal of Earth Sciences, 1988, 35, 445-449.	1.0	32
24	The Heerenveen Batholith, Barberton Mountain Land, South Africa: Mesoarchaean, Potassic, Felsic Magmas Formed by Melting of an Ancient Subduction Complex. Journal of Petrology, 2010, 51, 1099-1120.	2.8	26
25	Element concentrations in granitic magmas: ghosts of textures past?. Journal of the Geological Society, 2014, 171, 13-19.	2.1	24
26	Comment on â€~Water-fluxed melting of the continental crust: A review' by R.F. Weinberg and P. Hasalová. Lithos, 2015, 234-235, 100-101.	1.4	21
27	Strathbogie batholith: field-based subdivision of a large granitic intrusion in central Victoria, Australia. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 2013, 122, 36-55.	0.8	19
28	Do arc silicic magmas form by fluid-fluxed melting of older arc crust or fractionation of basaltic magmas?. Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	19
29	The Donkerhuk batholith, Namibia: A giant S-type granite emplaced in the mid crust, in a fore-arc setting. Journal of the Geological Society, 2017, 174, 157-169.	2.1	18
30	Post-orogenic shoshonitic magmas of the Yzerfontein pluton, South Africa: the â€~̃smoking gun' of mantle melting and crustal growth during Cape granite genesis?. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	17
31	Igneous differentiation by deformation. Contributions To Mineralogy and Petrology, 2020, 175, 1.	3.1	17
32	Biotite dehydration, partial melting, and fluid composition; experiments in the system KAlO ₂ -FeO-MgO-SiO ₂ -H ₂ O-CO ₂ . American Mineralogist, 1999, 84, 15-26.	1.9	16
33	Petrogenesis of the granitic Donkerhuk batholith in the Damara Belt of Namibia: protracted, syntectonic, short-range, crustal magma transfer. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	16
34	Petrogenetic processes in granitic magmas and their igneous microgranular enclaves from Central Victoria, Australia: match or mismatch?. Transactions of the Royal Society of South Africa, 2017, 72, 6-32.	1.1	16
35	Origins of cryptic variation in the Ediacaran–Fortunian rhyolitic ignimbrites of the Saldanha Bay Volcanic Complex, Western Cape, South Africa. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	13
36	Mafic schlieren, crystal accumulation and differentiation in granitic magmas: an integrated case study. Contributions To Mineralogy and Petrology, 2020, 175, 1.	3.1	13

JOHN CLEMENS

#	Article	IF	CITATIONS
37	Possible spatial variability in the Selwyn Block of Central Victoria: evidence from Late Devonian felsic igneous rocks. Australian Journal of Earth Sciences, 2016, 63, 187-192.	1.0	12
38	Geology and field relations of the Wilsons Promontory batholith, Victoria: multiple, shallow-dipping, S-type, granitic sheets. Australian Journal of Earth Sciences, 2018, 65, 769-785.	1.0	11
39	The You Yangs batholith in Southeastern Australia, the sources of its magmas and inferences for local crustal architecture. Australian Journal of Earth Sciences, 2019, 66, 247-264.	1.0	10
40	Comment — Origin of enclaves in S-type granites of the Lachlan Fold Belt. Lithos, 2013, 175-176, 351-352.	1.4	9
41	Looking beneath the Stawell and Bendigo zones in Victoria, Australia: a view through the granite window. Australian Journal of Earth Sciences, 2020, 67, 175-200.	1.0	9
42	The tabular Strathbogie batholith in central Victoria. Australian Journal of Earth Sciences, 2022, 69, 776-800.	1.0	9
43	Proterozoic VanDieland in Central Victoria: ages, compositions and source depths for late devonian silicic magmas. Australian Journal of Earth Sciences, 2019, 66, 519-530.	1.0	8
44	Large-scale mechanics of fracture-mediated felsic magma intrusion driven by hydraulic inflation and buoyancy pumping. Geological Society Special Publication, 2008, 302, 3-29.	1.3	7
45	A new precise date for the Tolmie Igneous Complex in northeastern Victoria. Australian Journal of Earth Sciences, 2014, 61, 951-958.	1.0	6
46	Age, duration and mineral markers of magma interactions in the deep crust: an example from the Pyrenees. Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	6
47	Granite suites: a problematic concept?. Australian Journal of Earth Sciences, 2020, 67, 509-523.	1.0	6
48	Mantle underplating, granite tectonics, and metamorphic P-T-tpaths: Comment and Reply. Geology, 1997, 25, 763.	4.4	1
49	Chemical structure in granitic magmas $\hat{a} \in $ a signal from the source?. , 2010, , .		1