
Jeppe Lund Nielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6581519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Situ Characterization of Nitrospira -Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants. Applied and Environmental Microbiology, 2001, 67, 5273-5284.	1.4	718
2	Combination of Fluorescent In Situ Hybridization and Microautoradiography—a New Tool for Structure-Function Analyses in Microbial Ecology. Applied and Environmental Microbiology, 1999, 65, 1289-1297.	1.4	635
3	Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures. Water Research, 2016, 101, 628-639.	5.3	420
4	Amyloid adhesins are abundant in natural biofilms. Environmental Microbiology, 2007, 9, 3077-3090.	1.8	291
5	Thaumarchaeotes abundant in refinery nitrifying sludges express <i>amoA</i> but are not obligate autotrophic ammonia oxidizers. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16771-16776.	3.3	272
6	A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Research, 2010, 44, 5070-5088.	5.3	257
7	Functional amyloid in <i>Pseudomonas</i> . Molecular Microbiology, 2010, 77, 1009-1020.	1.2	256
8	Identity and Ecophysiology of Uncultured Actinobacterial Polyphosphate-Accumulating Organisms in Full-Scale Enhanced Biological Phosphorus Removal Plants. Applied and Environmental Microbiology, 2005, 71, 4076-4085.	1.4	246
9	Microthrix parvicella, a specialized lipid consumer in anaerobic–aerobic activated sludge plants. Water Science and Technology, 2002, 46, 73-80.	1.2	244
10	Cohn'sCrenothrixis a filamentous methane oxidizer with an unusual methane monooxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2363-2367.	3.3	229
11	ldentification of active denitrifiers in fullâ€scale nutrient removal wastewater treatment systems. Environmental Microbiology, 2016, 18, 50-64.	1.8	226
12	High diversity and abundance of putative polyphosphate-accumulating Tetrasphaera-related bacteria in activated sludge systems. FEMS Microbiology Ecology, 2011, 76, 256-267.	1.3	218
13	MiDAS: the field guide to the microbes of activated sludge. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav062.	1.4	213
14	The Microbiome of Animals: Implications for Conservation Biology. International Journal of Genomics, 2016, 2016, 1-7.	0.8	204
15	Activity and growth of anammox biomass on aerobically pre-treated municipal wastewater. Water Research, 2015, 80, 325-336.	5.3	195
16	Biomass segregation between biofilm and flocs improves the control of nitrite-oxidizing bacteria in mainstream partial nitritation and anammox processes. Water Research, 2019, 154, 104-116.	5.3	191
17	A metabolic model for members of the genus <i>Tetrasphaera</i> involved in enhanced biological phosphorus removal. ISME Journal, 2013, 7, 543-554.	4.4	188
18	Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiology Reviews, 2009, 33, 969-998.	3.9	185

#	Article	IF	CITATIONS
19	Microautoradiographic Study of Rhodocyclus -Related Polyphosphate-Accumulating Bacteria in Full-Scale Enhanced Biological Phosphorus Removal Plants. Applied and Environmental Microbiology, 2004, 70, 5383-5390.	1.4	174
20	Microbial communities involved in enhanced biological phosphorus removal from wastewater—a model system in environmental biotechnology. Current Opinion in Biotechnology, 2012, 23, 452-459.	3.3	167
21	Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Current Opinion in Biotechnology, 2006, 17, 83-91.	3.3	166
22	Amyloid-Like Adhesins Produced by Floc-Forming and Filamentous Bacteria in Activated Sludge. Applied and Environmental Microbiology, 2008, 74, 1517-1526.	1.4	165
23	Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant. Microbiology (United Kingdom), 2007, 153, 4061-4073.	0.7	162
24	Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge. FEMS Microbiology Ecology, 2016, 92, fiw078.	1.3	155
25	Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants. Water Research, 2013, 47, 1529-1544.	5.3	153
26	In-situ biogas upgrading with pulse H 2 additions: The relevance of methanogen adaption and inorganic carbon level. Bioresource Technology, 2017, 233, 256-263.	4.8	146
27	Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions. Chemosphere, 2011, 84, 452-456.	4.2	144
28	Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms. Environmental Microbiology, 2011, 13, 710-721.	1.8	138
29	Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics. ISME Journal, 2016, 10, 2405-2418.	4.4	135
30	Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants: diversity and in situ physiology. Water Science and Technology, 2000, 41, 85-90.	1.2	131
31	Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman–FISH. ISME Journal, 2019, 13, 1933-1946.	4.4	130
32	Studies on the in situ physiology of Thiothrix spp. present in activated sludge. Environmental Microbiology, 2000, 2, 389-398.	1.8	125
33	Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environmental Microbiology, 2003, 5, 202-211.	1.8	115
34	Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environmental Microbiology, 2002, 4, 713-720.	1.8	113
35	Phylogenetic Identification and Substrate Uptake Patterns of Sulfate-Reducing Bacteria Inhabiting an Oxic-Anoxic Sewer Biofilm Determined by Combining Microautoradiography and Fluorescent In Situ Hybridization. Applied and Environmental Microbiology, 2002, 68, 356-364.	1.4	112
36	Exogenous addition of H 2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane. Waste Management, 2017, 68, 146-156.	3.7	110

#	Article	IF	CITATIONS
37	Abundance and ecophysiology of Defluviicoccus spp., glycogen-accumulating organisms in full-scale wastewater treatment processes. Microbiology (United Kingdom), 2007, 153, 178-185.	0.7	106
38	Microbial Nitrate-Dependent Oxidation of Ferrous Iron in Activated Sludge. Environmental Science & Technology, 1998, 32, 3556-3561.	4.6	104
39	Peracetic acid degradation and effects on nitrification in recirculating aquaculture systems. Aquaculture, 2009, 296, 246-254.	1.7	104
40	Ecophysiology of a group of uncultured Gammaproteobacterial glycogen-accumulating organisms in full-scale enhanced biological phosphorus removal wastewater treatment plants. Environmental Microbiology, 2006, 8, 479-489.	1.8	100
41	Influence of microbial activity on the stability of activated sludge flocs. Colloids and Surfaces B: Biointerfaces, 2000, 18, 145-156.	2.5	99
42	Characterization of a simple bacterial consortium for effective treatment of wastewaters with reactive dyes and Cr(VI). Chemosphere, 2007, 67, 826-831.	4.2	99
43	Abundance and Phylogenetic Affiliation of Iron Reducers in Activated Sludge as Assessed by Fluorescence In Situ Hybridization and Microautoradiography. Applied and Environmental Microbiology, 2002, 68, 4629-4636.	1.4	97
44	Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies. Water Research, 2008, 42, 1539-1546.	5.3	95
45	Metabolic model for the filamentous â€~ <i>Candidatus</i> Microthrix parvicella' based on genomic and metagenomic analyses. ISME Journal, 2013, 7, 1161-1172.	4.4	93
46	Strong responses of <i>Drosophila melanogaster</i> microbiota to developmental temperature. Fly, 2018, 12, 1-12.	0.9	93
47	Isotope Labeling and Microautoradiography of Active Heterotrophic Bacteria on the Basis of Assimilation of 14 CO 2. Applied and Environmental Microbiology, 2005, 71, 646-655.	1.4	91
48	Ecophysiology of the filamentous Alphaproteobacterium Meganema perideroedes in activated sludge. FEMS Microbiology Ecology, 2005, 54, 111-112.	1.3	78
49	Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge. FEMS Microbiology Ecology, 2008, 66, 447-461.	1.3	78
50	â€~ <i>Candidatus</i> Halomonas phosphatis', a novel polyphosphateâ€accumulating organism in fullâ€scale enhanced biological phosphorus removal plants. Environmental Microbiology, 2012, 14, 2826-2837.	1.8	76
51	Microbial diversity in bioaerosol samples causing ODTS compared to reference bioaerosol samples as measured using Illumina sequencing and MALDI-TOF. Environmental Research, 2015, 140, 255-267.	3.7	76
52	Abundance of actinobacteria and production of geosmin and 2-methylisoborneol in Danish streams and fish ponds. FEMS Microbiology Ecology, 2005, 52, 265-278.	1.3	75
53	Adhesion characteristics of nitrifying bacteria in activated sludge. Water Research, 2008, 42, 2814-2826.	5.3	72
54	Ecophysiology of the Actinobacteria in activated sludge systems. Antonie Van Leeuwenhoek, 2008, 94, 21-33.	0.7	71

#	Article	IF	CITATIONS
55	Bacterial Communities Associated with Houseflies (Musca domestica L.) Sampled within and between Farms. PLoS ONE, 2017, 12, e0169753.	1.1	69
56	Bacterial composition of activated sludge - importance for floc and sludge properties. Water Science and Technology, 2004, 49, 51-58.	1.2	66
57	Ecophysiology of mycolic acid-containing Actinobacteria (Mycolata) in activated sludge foams. FEMS Microbiology Ecology, 2007, 61, 174-184.	1.3	63
58	Quantitative proteomic analysis of ibuprofen-degrading Patulibacter sp. strain 111. Biodegradation, 2013, 24, 615-630.	1.5	63
59	Physiology and behaviour of marine <i>Thioploca</i> . ISME Journal, 2009, 3, 647-657.	4.4	62
60	Enhancing metaproteomics—The value of models and defined environmental microbial systems. Proteomics, 2016, 16, 783-798.	1.3	62
61	Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. ISME Journal, 2020, 14, 2595-2609.	4.4	62
62	Micromanipulation and further identification of FISH-labelled microcolonies of a dominant denitrifying bacterium in activated sludge. Environmental Microbiology, 2004, 6, 470-479.	1.8	55
63	Identification of Putative Genes Involved in Bisphenol A Degradation Using Differential Protein Abundance Analysis of <i>Sphingobium</i> sp. BiD32. Environmental Science & Technology, 2015, 49, 12232-12241.	4.6	54
64	Enumeration of acetate-consuming bacteria by microautoradiography under oxygen and nitrate respiring conditions in activated sludge. Water Research, 2002, 36, 421-428.	5.3	53
65	In situ studies of the phylogeny and physiology of filamentous bacteria with attached growth. Environmental Microbiology, 2002, 4, 383-391.	1.8	53
66	Characterization of the loosely attached fraction of activated sludge bacteria. Water Research, 2008, 42, 843-854.	5.3	53
67	Identification of glucose-fermenting bacteria in a full-scale enhanced biological phosphorus removal plant by stable isotope probing. Microbiology (United Kingdom), 2012, 158, 1818-1825.	0.7	53
68	Survival and activity of individual bioaugmentation strains. Bioresource Technology, 2015, 186, 192-199.	4.8	53
69	Evaluation of the Redox Dye 5-Cyano-2,3-Tolyl-Tetrazolium Chloride for Activity Studies by Simultaneous Use of Microautoradiography and Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 2003, 69, 641-643.	1.4	52
70	Community dynamics of denitrifying bacteria in full-scale wastewater treatment plants. Environmental Technology (United Kingdom), 2016, 37, 2358-2367.	1.2	50
71	Comparison of methods for determination of microbial biomass in wastewater. Water Research, 2001, 35, 1649-1658.	5.3	49
72	The effect on cardiorespiratory fitness after an 8-week period of commuter cycling — A randomized controlled study in adults. Preventive Medicine, 2011, 53, 172-177.	1.6	49

Jeppe Lund Nielsen

#	Article	IF	CITATIONS
73	Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 242-250.	0.8	49
74	Microbial species and biodiversity in settling dust within and between pig farms. Environmental Research, 2019, 171, 558-567.	3.7	49
75	Variations in microcolony strength of probe-defined bacteria in activated sludge flocs. FEMS Microbiology Ecology, 2004, 50, 123-132.	1.3	47
76	In vivo gene expression in a Staphylococcus aureus prosthetic joint infection characterized by RNA sequencing and metabolomics: a pilot study. BMC Microbiology, 2016, 16, 80.	1.3	44
77	Evaluation of a membrane bioreactor system as post-treatment in waste water treatment for better removal of micropollutants. Water Research, 2016, 107, 37-46.	5.3	44
78	Quantification of functional groups in activated sludge by microautoradiography. Water Science and Technology, 2002, 46, 389-395.	1.2	43
79	Advances in Microscopy: Microautoradiography of Single Cells. Methods in Enzymology, 2005, 397, 237-256.	0.4	42
80	Identification of Triclosan-O-Sulfate and other transformation products of Triclosan formed by activated sludge. Science of the Total Environment, 2015, 505, 39-46.	3.9	41
81	Microbial population dynamics in continuous anaerobic digester systems during start up, stable conditions and recovery after starvation. Bioresource Technology, 2017, 232, 313-320.	4.8	41
82	Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers. Journal of Hazardous Materials, 2011, 189, 685-691.	6.5	40
83	Degradation of PPCPs in activated sludge from different WWTPs in Denmark. Ecotoxicology, 2015, 24, 2073-2080.	1.1	40
84	Meganema perideroedes gen. nov., sp. nov., a filamentous alphaproteobacterium from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1865-1868.	0.8	39
85	Diversity and metabolic potential of the microbiota associated with a soil arthropod. Scientific Reports, 2018, 8, 2491.	1.6	39
86	Identification of triclosan-degrading bacteria using stable isotope probing, fluorescence in situ hybridization and microautoradiography. Microbiology (United Kingdom), 2012, 158, 2796-2804.	0.7	38
87	Stream water quality assessment by metabarcoding of invertebrates. Ecological Indicators, 2020, 111, 105982.	2.6	38
88	Characterisation of microbial communities for improved management of anaerobic digestion of food waste. Waste Management, 2020, 117, 124-135.	3.7	38
89	Detection of activity among uncultured Actinobacteria in a drinking water reservoir. FEMS Microbiology Ecology, 2006, 55, 432-438.	1.3	36
90	High and stable substrate specificities of microorganisms in enhanced biological phosphorus removal plants. Environmental Microbiology, 2013, 15, 1821-1831.	1.8	36

#	Article	IF	CITATIONS
91	Control ofMicrothrix parvicella in Activated Sludge Plants by Dosage of Polyaluminium Salts: Possible Mechanisms. Clean - Soil, Air, Water, 2005, 33, 255-261.	0.8	35
92	Community structure of bacteria and fungi in aerosols of a pig confinement building. FEMS Microbiology Ecology, 2012, 80, 390-401.	1.3	35
93	Proteomic data reveals a physiological basis for costs and benefits associated with thermal acclimation. Journal of Experimental Biology, 2016, 219, 969-76.	0.8	35
94	Microautoradiography: recent advances within the studies of the ecophysiology of bacteria in biofilms. Water Science and Technology, 2005, 52, 187-194.	1.2	34
95	In situ substrate conversion and assimilation by nitrifying bacteria in a model biofilm. Environmental Microbiology, 2005, 7, 1392-1404.	1.8	33
96	Impact of Bacillus spp. spores and gentamicin on the gastrointestinal microbiota of suckling and newly weaned piglets. PLoS ONE, 2018, 13, e0207382.	1.1	33
97	Stick or leave – Pushing methanogens to biofilm formation for ex situ biomethanation. Bioresource Technology, 2019, 291, 121784.	4.8	33
98	Biogas upgrading with hydrogenotrophic methanogenic biofilms. Bioresource Technology, 2019, 287, 121422.	4.8	33
99	Bacterial community structure of a full-scale biofilter treating pig house exhaust air. Systematic and Applied Microbiology, 2011, 34, 344-352.	1.2	32
100	Housefly (Musca domestica L.) associated microbiota across different life stages. Scientific Reports, 2020, 10, 7842.	1.6	32
101	In situ detection of cell surface hydrophobicity of probe-defined bacteria in activated sludge. Water Science and Technology, 2001, 43, 97-103.	1.2	31
102	Genomic, Proteomic, and Metabolite Characterization of Gemfibrozil-Degrading Organism <i>Bacillus</i> sp. GeD10. Environmental Science & Technology, 2016, 50, 744-755.	4.6	30
103	The microbial community of the gut differs between piglets fed sow milk, milk replacer or bovine colostrum. British Journal of Nutrition, 2017, 117, 964-978.	1.2	30
104	Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds. ISME Journal, 2021, 15, 3549-3565.	4.4	30
105	Bioremediation strategies for removal of residual atrazine in the boreal groundwater zone. Applied Microbiology and Biotechnology, 2015, 99, 10249-10259.	1.7	29
106	Butyric Acid- and Dimethyl Disulfide-Assimilating Microorganisms in a Biofilter Treating Air Emissions from a Livestock Facility. Applied and Environmental Microbiology, 2011, 77, 8595-8604.	1.4	27
107	Quantification of novel geosmin-producing bacteria in aquaculture systems. Aquaculture, 2017, 479, 304-310.	1.7	27
108	Transformation, CO2 formation and uptake of four organic micropollutants by carrier-attached microorganisms. Water Research, 2018, 141, 405-416.	5.3	27

#	Article	IF	CITATIONS
109	The In Situ Physiology of Pine Tree Like Organisms (PTLO) in Activated Sludge Foams. Clean - Soil, Air, Water, 2005, 33, 203-209.	0.8	24
110	The in situ physiology of Skermania piniformis in foams in Australian activated sludge plants. Environmental Microbiology, 2006, 8, 1712-1720.	1.8	24
111	Microbial diversity in biofilms from corroding heating systems. Biofouling, 2005, 21, 19-29.	0.8	23
112	Long term/low dose formalin exposure to small-scale recirculation aquaculture systems. Aquacultural Engineering, 2010, 42, 1-7.	1.4	23
113	Microbial Production of the Off-Flavor Geosmin in Tilapia Production in Brazilian Water Reservoirs: Importance of Bacteria in the Intestine and Other Fish-Associated Environments. Frontiers in Microbiology, 2019, 10, 2447.	1.5	23
114	Impact of polyethylene on salivary glands proteome in Galleria melonella. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020, 34, 100678.	0.4	23
115	The Microbial Database for Danish wastewater treatment plants with nutrient removal (MiDas-DK) – a tool for understanding activated sludge population dynamics and community stability. Water Science and Technology, 2013, 67, 2519-2526.	1.2	22
116	Cellulolytic and Xylanolytic Microbial Communities Associated With Lignocellulose-Rich Wheat Straw Degradation in Anaerobic Digestion. Frontiers in Microbiology, 2021, 12, 645174.	1.5	22
117	Biodegradation kinetics of organic micropollutants and microbial community dynamics in a moving bed biofilm reactor. Chemical Engineering Journal, 2021, 415, 128963.	6.6	22
118	End-of-pipe single-sludge denitrification in pilot-scale recirculating aquaculture systems. Aquacultural Engineering, 2014, 62, 28-35.	1.4	21
119	Functional responses and adaptation of mesophilic microbial communities to psychrophilic anaerobic digestion. FEMS Microbiology Ecology, 2015, 91, fiv132.	1.3	21
120	Monitoring and characterisation of bacteria in corroding district heating systems using fluorescence in situ hybridisation and microautoradiography. Water Science and Technology, 2003, 47, 117-122.	1.2	20
121	eDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants. Scientific Reports, 2021, 11, 6820.	1.6	20
122	Distribution, ecology and molecular identification of Thioploca from Danish brackish water sediments. FEMS Microbiology Ecology, 2010, 73, no-no.	1.3	19
123	Impact of dust on airborne Staphylococcus aureus' viability, culturability, inflammogenicity, and biofilm forming capacity. International Journal of Hygiene and Environmental Health, 2020, 230, 113608.	2.1	18
124	Method for measuring substrate preferences by individual members of microbial consortia proposed for bioaugmentation. Biodegradation, 2008, 19, 621-633.	1.5	17
125	Complete Genome of Rhodococcus pyridinivorans SB3094, a Methyl-Ethyl-Ketone-Degrading Bacterium Used for Bioaugmentation. Genome Announcements, 2014, 2, .	0.8	17
126	Genetic structure of the European hedgehog (Erinaceus europaeus)Âin Denmark. PLoS ONE, 2020, 15, e0227205.	1.1	17

#	Article	IF	CITATIONS
127	Floc-forming properties of polyphosphate accumulating organisms in activated sludge. Water Science and Technology, 2006, 54, 257-265.	1.2	16
128	Quantifying Contribution of Synthrophic Acetate Oxidation to Methane Production in Thermophilic Anaerobic Reactors by Membrane Inlet Mass Spectrometry. Environmental Science & Technology, 2014, 48, 140130145609003.	4.6	16
129	Influence of p-cresol on the proteome of the autotrophic nitrifying bacterium Nitrosomonas eutropha C91. Archives of Microbiology, 2014, 196, 497-511.	1.0	16
130	Mastication of polyolefins alters the microbial composition in Galleria mellonella. Environmental Pollution, 2021, 280, 116877.	3.7	16
131	Characterisation of cellulose-degrading organisms in an anaerobic digester. Bioresource Technology, 2022, 351, 126933.	4.8	16
132	Quantification of lipids and protein in thin biofilms by fluorescence staining. Biofouling, 2008, 24, 241-250.	0.8	15
133	Flow-through stable isotope probing (Flow-SIP) minimizes cross-feeding in complex microbial communities. ISME Journal, 2021, 15, 348-353.	4.4	14
134	Wildlife Conservation at a Garden Level: The Effect of Robotic Lawn Mowers on European Hedgehogs (Erinaceus europaeus). Animals, 2021, 11, 1191.	1.0	14
135	Population genomics of the raccoon dog (Nyctereutes procyonoides) in Denmark: insights into invasion history and population development. Biological Invasions, 2017, 19, 1637-1652.	1.2	13
136	Effects of ozone treatment on performance and microbial community composition in biofiltration systems treating ethyl acetate vapours. Chemosphere, 2019, 233, 67-75.	4.2	13
137	Integrated genome-wide investigations of the housefly, a global vector of diseases reveal unique dispersal patterns and bacterial communities across farms. BMC Genomics, 2020, 21, 66.	1.2	13
138	Comparing DNA metabarcoding with faecal analysis for diet determination of the Eurasian otter (Lutra lutra) in Vejlerne, Denmark. Mammal Research, 2021, 66, 115-122.	0.6	13
139	Flow Cytometry-Assisted Cloning of Specific Sequence Motifs from Complex 16S rRNA Gene Libraries. Applied and Environmental Microbiology, 2004, 70, 7550-7554.	1.4	12
140	Draft Genome Sequence of <i>Nitrosospira</i> sp. Strain APG3, a Psychrotolerant Ammonia-Oxidizing Bacterium Isolated from Sandy Lake Sediment. Genome Announcements, 2013, 1, .	0.8	12
141	Complete Genome Sequences of Pseudomonas monteilii SB3078 and SB3101, Two Benzene-, Toluene-, and Ethylbenzene-Degrading Bacteria Used for Bioaugmentation. Genome Announcements, 2014, 2, .	0.8	12
142	Physiological Responses of Aspergillus niger Challenged with Itraconazole. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	12
143	Dynamics of geosmin-producing bacteria in a full-scale saltwater recirculated aquaculture system. Aquaculture, 2019, 500, 170-177.	1.7	11
144	A cohort study of cucumber greenhouse workers' exposure to microorganisms as measured using NGS and MALDI-TOF MS and biomarkers of systemic inflammation. Environmental Research, 2021, 192, 110325.	3.7	11

#	Article	IF	CITATIONS
145	Wood-Ljungdahl pathway utilisation during in situ H2 biomethanation. Science of the Total Environment, 2022, 806, 151254.	3.9	11
146	The Gut Microbiome of 54 Mammalian Species. Frontiers in Microbiology, 0, 13, .	1.5	11
147	Diet of the European bison (Bison bonasus) in a forest habitat estimated by DNA barcoding. Mammal Research, 2021, 66, 123-136.	0.6	10
148	Rapid TaqMan-Based Quantification of Chlorophyll <i>d</i> -Containing Cyanobacteria in the Genus Acaryochloris. Applied and Environmental Microbiology, 2014, 80, 3244-3249.	1.4	9
149	Inter-laboratory testing of the effect of DNA blocking reagent G2 on DNA extraction from low-biomass clay samples. Scientific Reports, 2018, 8, 5711.	1.6	9
150	Functional Bacterial Amyloids in Biofilms. Springer Series on Biofilms, 2011, , 41-62.	0.0	9
151	Microbial Fe(II)-oxidation by nitrate in activated sludge. Water Science and Technology, 1998, 37, 403.	1.2	8
152	Use of Microautoradiography to Study in situ Physiology of Bacteria in Biofilms. Reviews in Environmental Science and Biotechnology, 2003, 2, 261-268.	3.9	8
153	Combination of Fluorescence In Situ Hybridization with Staining Techniques for Cell Viability and Accumulation of PHA and polyP in Microorganisms in Complex Microbial Systems. Methods in Molecular Biology, 2010, 599, 103-116.	0.4	8
154	Grafting cyclodextrins to calcium phosphate ceramics for biomedical applications. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 72, 173-181.	1.6	8
155	Unravelling gradient layers of microbial communities, proteins, and chemical structure in aerobic granules. Science of the Total Environment, 2022, 829, 154253.	3.9	8
156	Health benefits of microalgae and their microbiomes. Microbial Biotechnology, 2022, 15, 1966-1983.	2.0	8
157	Ecophysiological Analysis of Microorganisms in Complex Microbial Systems by Combination of Fluorescence In Situ Hybridization with Extracellular Staining Techniques. Methods in Molecular Biology, 2010, 599, 117-128.	0.4	7
158	eDNA and metabarcoding for rewilding projects monitoring, a dietary approach. Mammalian Biology, 2020, 100, 411-418.	0.8	6
159	Potential Respiratory Deposition and Species Composition of Airborne Culturable, Viable, and Non-Viable Fungi during Occupancy in a Pig Farm. Atmosphere, 2020, 11, 639.	1.0	6
160	Occurrence of <i>Cyanobacteria</i> and microcystins in hydroelectric reservoirs used for fish farming. Journal of Water and Health, 2020, 18, 983-994.	1.1	6
161	Tetrabromobisphenol A (TBBPA) biodegradation in acidogenic systems: One step further on where and who. Science of the Total Environment, 2022, 808, 152016.	3.9	6
162	<i>In situ</i> detection of bacteria involved in cathodic depolarization and stainless steel surface corrosion using microautoradiography. Journal of Applied Microbiology, 2008, 105, 2231-2238.	1.4	5

Jeppe Lund Nielsen

#	Article	IF	CITATIONS
163	Distribution of grafted β-cyclodextrin in porous particles for bone tissue engineering. Microporous and Mesoporous Materials, 2013, 168, 132-141.	2.2	5
164	Antifungal Resistance in Isolates of Aspergillus from a Pig Farm. Atmosphere, 2021, 12, 826.	1.0	5
165	A cross sectional study on airborne inhalable microorganisms, endotoxin, and particles in pigeon coops – Risk assessment of exposure. Environmental Research, 2022, 204, 112404.	3.7	5
166	Impact of water quality parameters on geosmin levels and geosmin producers in European recirculating aquaculture systems. Journal of Applied Microbiology, 2022, 132, 2475-2487.	1.4	4
167	Distribution and accessibility of cyclodextrins covalently bound onto silica gel. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 67, 399-405.	1.6	3
168	Preparation and characterization of a temperature-sensitive nonwoven poly (propylene) with antibacterial properties. Journal of the Textile Institute, 2014, 105, 327-336.	1.0	2
169	Bioaugmentation. Springer Protocols, 2016, , 105-115.	0.1	2
170	Microbial Fe(II)-oxidation by nitrate in activated sludge. Water Science and Technology, 1998, 37, 403-406.	1.2	2
171	Impact of the restraint of biofilm volume and thickness on the performance and microbial composition in anaerobic moving-bed biofilm reactors (AnMBBRs). Journal of Environmental Chemical Engineering, 2022, 10, 107741.	3.3	2
172	Assigning Function to Phylogeny: MAR-FISH. Methods in Molecular Biology, 2021, 2246, 225-236.	0.4	1
173	Ecological quality in freshwater streams is reflected across all three domains of life. Ecological Indicators, 2021, 130, 108059.	2.6	0