Jarle Vaage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6581427/publications.pdf Version: 2024-02-01

		117625	155660
137	3,709	34	55
papers	citations	h-index	g-index
143	143	143	3925
all docs	docs citations	times ranked	citing authors

INDLE VAACE

#	Article	IF	CITATIONS
1	Models and Techniques to Study Aortic Valve Calcification in Vitro, ex Vivo and in Vivo. An Overview. Frontiers in Pharmacology, 2022, 13, .	3.5	6
2	Plin2 deletion increases cholesteryl ester lipid droplet content and disturbs cholesterol balance in adrenal cortex. Journal of Lipid Research, 2021, 62, 100048.	4.2	18
3	Isolated Plin5-deficient cardiomyocytes store less lipid droplets than normal, but without increased sensitivity to hypoxia. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158873.	2.4	2
4	Complement activation is associated with poor outcome after out-of-hospital cardiac arrest. Resuscitation, 2021, 166, 129-136.	3.0	12
5	OUP accepted manuscript. European Journal of Cardio-thoracic Surgery, 2021, , .	1.4	2
6	A Novel Ex Vivo Model of Aortic Valve Calcification. A Preliminary Report. Frontiers in Pharmacology, 2020, 11, 568764.	3.5	11
7	Inhibiting nucleolin reduces inflammation induced by mitochondrial DNA in cardiomyocytes exposed to hypoxia and reoxygenation. British Journal of Pharmacology, 2019, 176, 4360-4372.	5.4	23
8	Interstitial cells in calcified aortic valves have reduced differentiation potential and stem cell-like properties. Scientific Reports, 2019, 9, 12934.	3.3	30
9	Mechanical stress alters the expression of calcification-related genes in vascular interstitial and endothelial cells. Interactive Cardiovascular and Thoracic Surgery, 2019, 28, 803-811.	1.1	17
10	Release of Mitochondrial and Nuclear DNA During On-Pump Heart Surgery: Kinetics and Relation to Extracellular Vesicles. Journal of Cardiovascular Translational Research, 2019, 12, 184-192.	2.4	18
11	A dose–response study of glutamate supplementation in isolated, perfused rat hearts undergoing ischaemia and cold cardioplegia. European Journal of Cardio-thoracic Surgery, 2018, 53, 664-671.	1.4	2
12	Different Notch signaling in cells from calcified bicuspid and tricuspid aortic valves. Journal of Molecular and Cellular Cardiology, 2018, 114, 211-219.	1.9	36
13	Inflammation and Mechanical Stress Stimulate Osteogenic Differentiation of Human Aortic Valve Interstitial Cells. Frontiers in Physiology, 2018, 9, 1635.	2.8	34
14	FP608SNF472 INHIBITS HUMAN AORTIC VALVE CALCIFICATION IN VITRO. Nephrology Dialysis Transplantation, 2018, 33, i247-i247.	0.7	0
15	Connective tissue growth factor and bone morphogenetic protein 2 are induced following myocardial ischemia in mice and humans. Scandinavian Journal of Clinical and Laboratory Investigation, 2017, 77, 321-331.	1.2	8
16	Valve Interstitial Cells: The Key to Understanding the Pathophysiology of Heart Valve Calcification. Journal of the American Heart Association, 2017, 6, .	3.7	215
17	Mode of perfusion influences infarct size, coronary flow and stress kinases in the isolated mouse heart. Acta Physiologica, 2017, 220, 36-46.	3.8	6
18	In vivo visualization and ex vivo quantification of experimental myocardial infarction by indocyanine green fluorescence imaging. Biomedical Optics Express, 2017, 8, 151.	2.9	14

Jarle Vaage

#	Article	IF	CITATIONS
19	Phenotypic and Functional Changes of Endothelial and Smooth Muscle Cells in Thoracic Aortic Aneurysms. International Journal of Vascular Medicine, 2016, 2016, 1-11.	1.0	39
20	Extracellular mtDNA activates NF-κB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Research in Cardiology, 2016, 111, 42.	5.9	79
21	Oxygen- and temperature-dependent expression of survival protein kinases in crucian carp (Carassius) Tj ETQq1 1 Physiology, 2015, 308, R50-R61.	0.784314 1.8	rgBT /Over 7
22	Higher TNFα responses in young males compared to females are associated with attenuation of monocyte adenylyl cyclase expression. Human Immunology, 2015, 76, 427-430.	2.4	12
23	The p66ShcA adaptor protein regulates healing after myocardial infarction. Basic Research in Cardiology, 2015, 110, 13.	5.9	18
24	Mitochondrial DNA damage and repair during ischemia–reperfusion injury of the heart. Journal of Molecular and Cellular Cardiology, 2015, 78, 9-22.	1.9	32
25	Serglycin in Quiescent and Proliferating Primary Endothelial Cells. PLoS ONE, 2015, 10, e0145584.	2.5	15
26	Life without Oxygen: Gene Regulatory Responses of the Crucian Carp (Carassius carassius) Heart Subjected to Chronic Anoxia. PLoS ONE, 2014, 9, e109978.	2.5	18
27	Deletion of the aquaporin-4 gene alters expression and phosphorylation of protective kinases in the mouse heart. Scandinavian Journal of Clinical and Laboratory Investigation, 2014, 74, 500-505.	1.2	3
28	P138p66ShcA adaptor protein facilitates heart rupture via activation of MMP-2 in an in vivo model of myocardial infarction in mice Cardiovascular Research, 2014, 103, S24.2-S24.	3.8	0
29	P668Extracellular mitochondrial DNA induces cell death in cardiomyocytes. Cardiovascular Research, 2014, 103, S122.2-S122.	3.8	1
30	Expression of bone morphogenetic protein 4 and its receptors in the remodeling heart. Life Sciences, 2014, 97, 145-154.	4.3	32
31	P647Bone morphogenetic protein-2 is induced in the heart after ischemic injury. Cardiovascular Research, 2014, 103, S118.1-S118.	3.8	1
32	Cardiac aquaporins. Basic Research in Cardiology, 2013, 108, 393.	5.9	35
33	Aquaporin-1 in cardiac endothelial cells is downregulated in ischemia, hypoxia and cardioplegia. Journal of Molecular and Cellular Cardiology, 2013, 56, 22-33.	1.9	38
34	Interleukin-17 (IL-17) Expression Is Reduced during Acute Myocardial Infarction: Role on Chemokine Receptor Expression in Monocytes and Their in Vitro Chemotaxis towards Chemokines. Toxins, 2012, 4, 1427-1439.	3.4	10
35	Per-unit-living tissue normalization of real-time RT-PCR data in ischemic rat hearts. Physiological Genomics, 2012, 44, 651-656.	2.3	9
36	Transient hyperosmolality modulates expression of cardiac aquaporins. Biochemical and Biophysical Research Communications, 2012, 425, 70-75.	2.1	16

#	Article	IF	CITATIONS
37	Aquaporin-4 in the heart: expression, regulation and functional role in ischemia. Basic Research in Cardiology, 2012, 107, 280.	5.9	32
38	Hyperoxia during early reperfusion does not increase ischemia/reperfusion injury. European Journal of Cardio-thoracic Surgery, 2011, 41, 149-53.	1.4	4
39	Expression of heat shock proteins in anoxic crucian carp (Carassius carassius): support for cold as a preparatory cue for anoxia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R1499-R1508.	1.8	44
40	Postconditioning in mouse hearts is inhibited by blocking the reverse mode of the sodium–calcium exchangerâ~†. Interactive Cardiovascular and Thoracic Surgery, 2010, 10, 743-748.	1.1	9
41	Inadvertent phosphorylation of survival kinases in isolated perfused hearts: a word of caution. Basic Research in Cardiology, 2009, 104, 412-423.	5.9	26
42	Degree of phosphorylation of survival kinases in isolated mouse hearts depends on the mode of perfusion. Journal of Molecular and Cellular Cardiology, 2008, 44, 809.	1.9	1
43	Surgical handling of saphenous vein grafts induces expression of matrix metalloproteinase 9. Scandinavian Cardiovascular Journal, 2008, 42, 327-336.	1.2	2
44	Differential regulation of AMP-activated kinase and AKT kinase in response to oxygen availability in crucian carp (<i>Carassius carassius</i>). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1803-R1814.	1.8	47
45	Human adaptation to ischemia by preconditioning or unstable angina: involvement of nuclear factor kappa B, but not hypoxia-inducible factor 1 alpha in the heart. European Journal of Cardio-thoracic Surgery, 2008, 34, 976-984.	1.4	17
46	Effects of hydrogen sulphide on ischaemia–reperfusion injury and ischaemic preconditioning in the isolated, perfused rat heartâ~†. European Journal of Cardio-thoracic Surgery, 2008, 34, 344-349.	1.4	69
47	Preconditioning effects of steroids and hyperoxia on cardiac ischemia–reperfusion injury and vascular reactivityâ~†. European Journal of Cardio-thoracic Surgery, 2008, 33, 355-363.	1.4	25
48	Is the isolated heart preconditioned?. Journal of Molecular and Cellular Cardiology, 2007, 42, S174-S175.	1.9	0
49	Small skin burn injury reduces cardiac tolerance to ischemia via a tumor necrosis factor alpha-dependent pathway. Burns, 2007, 33, 606-612.	1.9	2
50	Preoperative unstable angina causes venous adaptation to surgical graft injury. Basic Research in Cardiology, 2007, 102, 265-273.	5.9	5
51	Myocardial protection evoked by hyperoxic exposure involves signaling through nitric oxide and mitogen activated protein kinases. Basic Research in Cardiology, 2007, 102, 318-326.	5.9	29
52	Proteasomal proteolysis in anoxia-reoxygenation, preconditioning and postconditioning of isolated cardiomyocytes. Pathophysiology, 2006, 13, 119-125.	2.2	21
53	Vein Graft Harvesting Induces Inflammation and Impairs Vessel Reactivity. Annals of Thoracic Surgery, 2006, 82, 1458-1464.	1.3	41
54	Proteasome inhibitors reproduce preconditioning and postconditioning in cardiomyocyte culture. Journal of Molecular and Cellular Cardiology, 2006, 40, 936.	1.9	0

#	Article	IF	CITATIONS
55	Myocardial protection evoked by hyperoxic exposure involves signaling through nitric oxide and mitogen activated protein kinases. Journal of Molecular and Cellular Cardiology, 2006, 40, 958.	1.9	Ο
56	ISOFLURANE AND OTHER COMMONLY USED ANAESTHETICS DO NOT PROTECT THE ISOLATED BUFFER PERFUSED MOUSE HEART FROM ISCHEMIA-REPERFUSION INJURY. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 315-319.	1.9	4
57	Lazaroid U-83836E Improves Tolerance to Hemorrhagic Shock and Limb Ischemia and Reperfusion in Rats and Increases Cardiac Heat Shock Protein 72. Academic Emergency Medicine, 2006, 13, 7-12.	1.8	9
58	Cognitive function after on or off pump coronary artery bypass grafting. European Journal of Cardio-thoracic Surgery, 2006, 30, 305-310.	1.4	41
59	Postconditioning in rats and mice. Scandinavian Cardiovascular Journal, 2006, 40, 334-341.	1.2	33
60	Role of tumor necrosis factor alpha and its receptor I in preconditioning by hyperoxia. Basic Research in Cardiology, 2005, 100, 198-207.	5.9	28
61	Pre? and postconditioning during cardiac surgery. Basic Research in Cardiology, 2005, 100, 179-186.	5.9	35
62	Intraperitoneal injection induces a delayed preconditioning-like effect in mice. Laboratory Animals, 2005, 39, 298-307.	1.0	4
63	Editorial commentOld skills in a new context—But do we want to use it?. European Journal of Cardio-thoracic Surgery, 2005, 28, 831-832.	1.4	3
64	Pulmonary hemodynamics and gas exchange in off pump coronary artery bypass grafting. Interactive Cardiovascular and Thoracic Surgery, 2005, 4, 493-497.	1.1	11
65	Peripheral blood monocyte activation during coronary artery bypass grafting with or without cardiopulmonary bypass. Scandinavian Cardiovascular Journal, 2005, 39, 78-86.	1.2	26
66	Hemostasis in Off-Pump Compared to On-Pump Coronary Artery Bypass Grafting: A Prospective, Randomized Study. Annals of Thoracic Surgery, 2005, 80, 586-593.	1.3	34
67	Metabolic changes induced by ischemia and cardioplegia: a study employing cardiac microdialysis in pigs. European Journal of Cardio-thoracic Surgery, 2004, 25, 69-75.	1.4	17
68	lschemic postconditioning: brief ischemia during reperfusion converts persistent ventricular fibrillation into regular rhythm. European Journal of Cardio-thoracic Surgery, 2004, 25, 1006-1010.	1.4	101
69	Activation of complement and leukocyte receptors during on- and off pump coronary artery bypass surgery. European Journal of Cardio-thoracic Surgery, 2004, 25, 35-42.	1.4	80
70	Reply to Raja. European Journal of Cardio-thoracic Surgery, 2004, 25, 907-907.	1.4	0
71	Myocardial protection by remote preconditioning: the role of nuclear factor kappa-B p105 and inducible nitric oxide synthase. European Journal of Cardio-thoracic Surgery, 2004, 26, 968-973.	1.4	73
72	The cardiothoracic surgeon and the basic scientistâ~†. European Journal of Cardio-thoracic Surgery, 2004, 26, 237-238.	1.4	2

#	Article	IF	CITATIONS
73	INVITED COMMENTARY. Annals of Thoracic Surgery, 2004, 78, 1658.	1.3	0
74	Biochemical markers of neurologic injury in cardiac surgery: The rise and fall of S100β. Journal of Thoracic and Cardiovascular Surgery, 2003, 125, S31-S33.	0.8	1
75	Hyperoxia elicits myocardial protection through a nuclear factor κB-dependent mechanism in the rat heart. Journal of Thoracic and Cardiovascular Surgery, 2003, 125, 650-660.	0.8	87
76	Effects of sex, gonadectomy, and oestrogen substitution on ischaemic preconditioning and ischaemia-reperfusion injury in mice. Acta Physiologica Scandinavica, 2003, 177, 459-466.	2.2	79
77	Preconditioning and cardiac surgery. Annals of Thoracic Surgery, 2003, 75, S709-S714.	1.3	42
78	Protective effect of antioxidants on pulmonary endothelial function after cardiopulmonary bypass. Journal of Cardiothoracic and Vascular Anesthesia, 2003, 17, 314-320.	1.3	36
79	Biochemical markers of cerebrospinal ischemia after repair of aneurysms of the descending and thoracoabdominal aorta. Journal of Cardiothoracic and Vascular Anesthesia, 2003, 17, 598-603.	1.3	55
80	Cardiovascular function during the first 24 hours after off pump coronary artery bypass grafting–a prospective, randomized study. Interactive Cardiovascular and Thoracic Surgery, 2003, 2, 489-494.	1.1	16
81	A model of neointima formation in the atherosclerotic carotid artery of mice. Interactive Cardiovascular and Thoracic Surgery, 2003, 2, 196-200.	1.1	1
82	Adaptation to Ischemia by in vivo Exposure to Hyperoxia—Signalling through Mitogen Activated Protein Kinases and Nuclear Factor Kappa B. Progress in Experimental Cardiology, 2003, , 461-477.	0.0	2
83	Cardioprotection by breathing hyperoxic gas—relation to oxygen concentration and exposure time in rats and mice. European Journal of Cardio-thoracic Surgery, 2002, 21, 987-994.	1.4	40
84	Postoperative mediastinitis in cardiac surgery — microbiology and pathogenesis. European Journal of Cardio-thoracic Surgery, 2002, 21, 825-830.	1.4	249
85	Importance of preanalytical handling of samples for measurement of cardiac troponin T in coronary effluent from isolated rat hearts. Scandinavian Journal of Clinical and Laboratory Investigation, 2002, 62, 255-262.	1.2	2
86	Surgical handling, but not unstable angina, induces remodelling. Journal of Molecular and Cellular Cardiology, 2002, 34, A16.	1.9	0
87	Remote, delayed preconditioning by I.P. injections — possible signalling through map kinases and NFκB. Journal of Molecular and Cellular Cardiology, 2002, 34, A37.	1.9	1
88	A possible role for inducible nitric oxide synthase in hyperoxia-induced myocardial protection. Journal of Molecular and Cellular Cardiology, 2002, 34, A62.	1.9	0
89	Exposure of rats to hyperoxia enhances relaxation of isolated aortic rings and reduces infarct size of isolated hearts. Acta Physiologica Scandinavica, 2002, 175, 271-277.	2.2	16
90	Induction of inflammatory mediators during reperfusion of the human heart. Annals of Thoracic Surgery, 2001, 71, 226-232.	1.3	67

#	Article	IF	CITATIONS
91	Preconditioning protects the severely atherosclerotic mouse heart. Annals of Thoracic Surgery, 2001, 71, 1296-1303.	1.3	42
92	Increase in serum S100A1-B and S100BB during cardiac surgery arises from extracerebral sources. Annals of Thoracic Surgery, 2001, 71, 1512-1517.	1.3	140
93	Pretreating rats with hyperoxia attenuates ischemia-reperfusion injury of the heart. Life Sciences, 2001, 68, 1629-1640.	4.3	61
94	Better Preserved Pulmonary Endothelium-dependent Vasodilation with Off-pump Coronary Surgery. Scandinavian Cardiovascular Journal, 2001, 35, 264-269.	1.2	7
95	The role of neuronal nitric oxide synthase in ischaemia-reperfusion injury of the isolated mouse heart. Acta Physiologica Scandinavica, 2001, 172, 291-295.	2.2	6
96	Biochemical markers of neurologic injury in cardiac surgery: The rise and fall of S100β. Journal of Thoracic and Cardiovascular Surgery, 2001, 122, 853-855.	0.8	40
97	Fewer reoperations and shorter stay in the cardiac surgical ward when stabilising the sternum with the Ley prosthesis in post-operative mediastinitis. European Journal of Cardio-thoracic Surgery, 2001, 20, 133-139.	1.4	22
98	Glucocorticoid pretreatment protects cardiac function and induces cardiac heat shock protein 72. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H836-H843.	3.2	55
99	Pretreatment with methylprednisolone protects the isolated rat heart against ischaemic and oxidative damage. Free Radical Research, 2000, 33, 31-43.	3.3	25
100	Gene expression of inflammatory mediators in different chambers of the human heart. Annals of Thoracic Surgery, 2000, 70, 562-567.	1.3	19
101	The effect of cardiotomy suction on the brain injury marker S100β after cardiopulmonary bypass. Annals of Thoracic Surgery, 2000, 69, 847-850.	1.3	137
102	Effects of Cardiac Surgery on Some Clinically Used Inflammation Markers and Procalcitonin. Scandinavian Cardiovascular Journal, 2000, 34, 307-314.	1.2	13
103	Intermittent warm blood cardioplegia does not provide adequate myocardial resuscitation after global ischaemiaâ~†. European Journal of Cardio-thoracic Surgery, 1999, 16, 233-239.	1.4	4
104	Hydrogen peroxide induces endothelial cell atypia and cytoskeleton depolymerization. Free Radical Biology and Medicine, 1999, 26, 1480-1488.	2.9	26
105	Increased extracellular brain water after coronary artery bypass grafting is avoided by off-pump surgery. Journal of Cardiothoracic and Vascular Anesthesia, 1999, 13, 698-702.	1.3	67
106	Release of S100B during coronary artery bypass grafting is reduced by off-pump surgery. Annals of Thoracic Surgery, 1999, 67, 1721-1725.	1.3	65
107	Computed tomography of the sternum and mediastinum after median sternotomy. Annals of Thoracic Surgery, 1999, 68, 858-863.	1.3	79
108	Warm or cold continuous blood cardioplegia provides similar myocardial protection. Annals of Thoracic Surgery, 1999, 68, 454-459.	1.3	9

#	Article	IF	CITATIONS
109	Simultaneous Antegrade And Retrograde Delivery Of Continuous Warm Blood Cardioplegia After Global Ischemia. Journal of Thoracic and Cardiovascular Surgery, 1998, 115, 716-722.	0.8	19
110	Measurements of Plasma Glutaredoxin and Thioredoxin in Healthy Volunteers and During Open-Heart Surgery. Free Radical Biology and Medicine, 1998, 24, 1176-1186.	2.9	109
111	Effects of a Novel, Low-Molecular Weight Inhibitor of Lipid Peroxidation on Ischemia–Reperfusion Injury in Isolated Rat Hearts and in Cultured Cardiomyocytes. Free Radical Biology and Medicine, 1998, 24, 1462-1469.	2.9	10
112	Release of Markers of Myocardial and Endothelial Injury Following Cold Cardioplegia Arrest in Pigs. Scandinavian Cardiovascular Journal, 1997, 31, 45-50.	1.2	7
113	OXIDATIVE STRESS AND RELEASE OF TISSUE PLASMINOGEN ACTIVATOR IN ISOLATED RAT HEARTS. Thrombosis Research, 1997, 85, 245-257.	1.7	7
114	Exogenous Reactive Oxygen Species Deplete the Isolated Rat Heart of Antioxidants. Free Radical Biology and Medicine, 1997, 22, 85-92.	2.9	41
115	Release of tissue plasminogen activator during reperfusion after different times of ischaemia in isolated, perfused rat hearts. Thrombosis Research, 1996, 82, 533-542.	1.7	13
116	SYSTEMIC RELEASE OF THROMBOMODULIN, BUT NOT FROM THE CARDIOPLEGIC, REPERFUSED HEART DURING OPEN HEART SURGERY. Thrombosis Research, 1996, 83, 321-328.	1.7	4
117	Preconditioning improves cardiac function after global ischemia, but not after cold cardioplegia. Annals of Thoracic Surgery, 1996, 62, 1397-1403.	1.3	25
118	Effects of a novel low-molecular weight antioxidant on cardiac injury induced by hydrogen peroxide. Free Radical Biology and Medicine, 1996, 20, 567-572.	2.9	12
119	The Effect of Exogenous Adenosine on Functional Injury Caused by Hydrogen Peroxide in the Isolated Rat Heart. Free Radical Research, 1996, 24, 31-38.	3.3	2
120	The effects of exogenous histamine in isolated rat hearts. Molecular and Cellular Biochemistry, 1995, 146, 55-61.	3.1	5
121	Microvascular Injury Induced by Intravascular Platelet Aggregation: An Experimental Study. Scandinavian Journal of Thoracic and Cardiovascular Surgery, 1994, 28, 127-133.	0.2	2
122	Lipid peroxidation in open-heart surgery. Perfusion (United Kingdom), 1994, 9, 277-283.	1.0	12
123	Open heart surgery increases the levels of histamine in arterial and coronary sinus blood. Agents and Actions, 1994, 41, 11-16.	0.7	15
124	Release of von willebrand factor by cardiopulmonary bypass, but not by cardioplegia in open heart surgery. Thrombosis Research, 1994, 73, 21-29.	1.7	18
125	Inhibition of lipoxygenase and cyclooxygenase augments cardiac injury by H2O2. Free Radical Biology and Medicine, 1993, 15, 27-35.	2.9	11
126	Thromboplastin Activities and Monocytes in the Coronary Circulation of Reperfused Human Myocardium: No Effect of Preoperative Treatment with n-3 Fatty Acids. Scandinavian Journal of Thoracic and Cardiovascular Surgery, 1993, 27, 81-86.	0.2	2

#	Article	IF	CITATIONS
127	Retrograde Cardioplegia: When and How: A Review. Scandinavian Journal of Thoracic and Cardiovascular Surgery, 1993, 27, 59-66.	0.2	4
128	Pathophysiology and Mediators of Ischemia-Reperfusion Injury with Special Reference to Cardiac Surgery: A Review. Scandinavian Journal of Thoracic and Cardiovascular Surgery, 1993, 27, 1-18.	0.2	50
129	Toxic Oxygen Metabolites and Leukocytes in Reperfusion Injury: A Review. Scandinavian Journal of Thoracic and Cardiovascular Surgery, 1993, 27, 19-29.	0.2	24
130	Coronary Trapping of a Complement Activation Product (C3a des-Arg) During Myocardial Reperfusion in Open-Heart Surgery. Scandinavian Journal of Thoracic and Cardiovascular Surgery, 1990, 24, 223-227.	0.2	13
131	Oxygen free radicals decrease survival time of isolated rat hearts. Scandinavian Journal of Thoracic and Cardiovascular Surgery, 1989, 23, 135-138.	0.2	5
132	Late sequelae of lung contusion. Injury, 1989, 20, 253-256.	1.7	11
133	INTRAVASCULAR PLATELET AGGREGATION AND PULMONARY INJURY. Annals of the New York Academy of Sciences, 1982, 384, 301-318.	3.8	29
134	Prostaglandin content in blood and lung tissue during alveolar hypoxia. Acta Physiologica Scandinavica, 1978, 102, 181-190.	2.2	15
135	Release of prostaglandin-like substances and lung reactions to induced intravascular platelet aggregation in cats. Scandinavian Journal of Clinical and Laboratory Investigation, 1978, 38, 337-347.	1.2	9
136	Small Airway Constriction and Closure after Induced Intravascular Platelet Aggregation. Acta Physiologica Scandinavica, 1977, 100, 221-230.	2.2	14
137	Vagal Reflexes in the Bronchoconstriction Occurring after Induced Intravascular Platelet Aggregation, Acta Physiologica Scandinavica, 1976, 97, 94-103,	2.2	13