
Udo S Gaipl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/658128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Head and neck tumor cells treated with hypofractionated irradiation die via apoptosis and are better taken up by M1-like macrophages. Strahlentherapie Und Onkologie, 2022, 198, 171-182.	2.0	8
2	Induction chemoimmunotherapy followed by CD8+ immune cell-based patient selection for chemotherapy-free radioimmunotherapy in locally advanced head and neck cancer. , 2022, 10, e003747.		23
3	Radon Improves Clinical Response in an Animal Model of Rheumatoid Arthritis Accompanied by Increased Numbers of Peripheral Blood B Cells and Interleukin-5 Concentration. Cells, 2022, 11, 689.	4.1	3
4	Anti-inflammatory effects of an autologous gold-based serum therapy in osteoarthritis patients. Scientific Reports, 2022, 12, 3560.	3.3	4
5	The Effect of Hyperthermia and Radiotherapy Sequence on Cancer Cell Death and the Immune Phenotype of Breast Cancer Cells. Cancers, 2022, 14, 2050.	3.7	13
6	Detailed <i>inÂvitro</i> analyses of the impact of multimodal cancer therapy with hyperthermia and radiotherapy on the immune phenotype of human glioblastoma cells. International Journal of Hyperthermia, 2022, 39, 796-805.	2.5	4
7	Development and validation of longitudinal c-reactive protein as dynamic response predictor for PD-L1 blockade in advanced NSCLC: Findings from four atezolizumab clinical trials Journal of Clinical Oncology, 2022, 40, e21113-e21113.	1.6	0
8	Pathologic response after induction chemo-immunotherapy with single or double immune checkpoint inhibition in locally advanced head and neck squamous cell carcinoma (HNSCC): Expansion cohorts of the CheckRad-CD8 trial Journal of Clinical Oncology, 2022, 40, 6064-6064.	1.6	2
9	Prospective development and validation of a liquid immune profile-based signature (LIPS) to predict response of patients with recurrent/metastatic cancer to immune checkpoint inhibitors. , 2021, 9, e001845.		36
10	Combinations of Radiotherapy with Vaccination and Immune Checkpoint Inhibition Differently Affect Primary and Abscopal Tumor Growth and the Tumor Microenvironment. Cancers, 2021, 13, 714.	3.7	32
11	Questionnaire-based detection of immune-related adverse events in cancer patients treated with PD-1/PD-L1 immune checkpoint inhibitors. BMC Cancer, 2021, 21, 314.	2.6	9
12	Identification of 15 IncRNAs Signature for Predicting Survival Benefit of Advanced Melanoma Patients Treated with Anti-PD-1 Monotherapy. Cells, 2021, 10, 977.	4.1	25
13	Implementation of Double Immune Checkpoint Blockade Increases Response Rate to Induction Chemotherapy in Head and Neck Cancer. Cancers, 2021, 13, 1959.	3.7	11
14	In Vitro Examinations of Cell Death Induction and the Immune Phenotype of Cancer Cells Following Radiative-Based Hyperthermia with 915 MHz in Combination with Radiotherapy. Cells, 2021, 10, 1436.	4.1	8
15	Editorial to Radiation in Multimodal Tumor Immune Therapies—Mechanisms and Application. International Journal of Molecular Sciences, 2021, 22, 7648.	4.1	0
16	Graphene-Induced Hyperthermia (GIHT) Combined With Radiotherapy Fosters Immunogenic Cell Death. Frontiers in Oncology, 2021, 11, 664615.	2.8	13
17	Hypofractionated Radiotherapy Upregulates Several Immune Checkpoint Molecules in Head and Neck Squamous Cell Carcinoma Cells Independently of the HPV Status While ICOS-L Is Upregulated Only on HPV-Positive Cells. International Journal of Molecular Sciences, 2021, 22, 9114.	4.1	10
18	Radiotherapy and the immune system: More than just immune suppression. Stem Cells, 2021, 39, 1155-1165.	3.2	61

#	Article	IF	CITATIONS
19	Gas plasma irradiation of breast cancers promotes immunogenicity, tumor reduction, and an abscopal effect in vivo. Oncolmmunology, 2021, 10, 1859731.	4.6	34
20	Radon Exposure—Therapeutic Effect and Cancer Risk. International Journal of Molecular Sciences, 2021, 22, 316.	4.1	43
21	Low Dose Radiation Therapy Induces Long-Lasting Reduction of Pain and Immune Modulations in the Peripheral Blood – Interim Analysis of the IMMO-LDRT01 Trial. Frontiers in Immunology, 2021, 12, 740742.	4.8	8
22	Reduction of Elective Radiotherapy Treatment Volume in Definitive Treatment of Locally Advanced Head and Neck Cancer—Comparison of a Prospective Trial with a Revised Simulated Contouring Approach. Journal of Clinical Medicine, 2021, 10, 4653.	2.4	1
23	Predictive Value of Multiparametric MRI for Response to Single-Cycle Induction Chemo-Immunotherapy in Locally Advanced Head and Neck Squamous Cell Carcinoma. Frontiers in Oncology, 2021, 11, 734872.	2.8	9
24	Theoretical Evaluation of the Impact of Hyperthermia in Combination with Radiation Therapy in an Artificial Immune—Tumor-Ecosystem. Cancers, 2021, 13, 5764.	3.7	7
25	Low-Dose Radiotherapy Leads to a Systemic Anti-Inflammatory Shift in the Pre-Clinical K/BxN Serum Transfer Model and Reduces Osteoarthritic Pain in Patients. Frontiers in Immunology, 2021, 12, 777792.	4.8	5
26	ls it time to redefine the role of low-dose radiotherapy for benign disease?. Annals of the Rheumatic Diseases, 2020, 79, e34-e34.	0.9	18
27	Analysis of the immune status from peripheral whole blood with a single-tube multicolor flow cytometry assay. Methods in Enzymology, 2020, 632, 389-415.	1.0	10
28	Priming of Anti-tumor Immune Mechanisms by Radiotherapy Is Augmented by Inhibition of Heat Shock Protein 90. Frontiers in Oncology, 2020, 10, 1668.	2.8	5
29	Safety and efficacy of single cycle induction treatment with cisplatin/docetaxel/ durvalumab/tremelimumab in locally advanced HNSCC: first results of CheckRad-CD8. , 2020, 8, e001378.		51
30	Prospective evaluation of the prognostic value of immune-related adverse events in patients with non-melanoma solid tumour treated with PD-1/PD-L1 inhibitors alone and in combination with radiotherapy. European Journal of Cancer, 2020, 140, 55-62.	2.8	23
31	Radiomics to predict outcomes and abscopal response of patients with cancer treated with immunotherapy combined with radiotherapy using a validated signature of CD8 cells. , 2020, 8, e001429.		46
32	Defining Metaniches in the Oral Cavity According to Their Microbial Composition and Cytokine Profile. International Journal of Molecular Sciences, 2020, 21, 8218.	4.1	17
33	Prospective Evaluation of All-lesion Versus Single-lesion Radiotherapy in Combination With PD-1/PD-L1 Immune Checkpoint Inhibitors. Frontiers in Oncology, 2020, 10, 576643.	2.8	13
34	Development and Validation of a Gene Signature for Prediction of Relapse in Stage I Testicular Germ Cell Tumors. Frontiers in Oncology, 2020, 10, 1147.	2.8	2
35	The Influence of Radiation on Bone and Bone Cells—Differential Effects on Osteoclasts and Osteoblasts. International Journal of Molecular Sciences, 2020, 21, 6377.	4.1	40
36	Low Dose Radiation Therapy, Particularly with 0.5 Gy, Improves Pain in Degenerative Joint Disease of the Fingers: Results of a Retrospective Analysis. International Journal of Molecular Sciences, 2020, 21, 5854.	4.1	19

#	Article	IF	CITATIONS
37	Differences of the Immune Phenotype of Breast Cancer Cells after Ex Vivo Hyperthermia by Warm-Water or Microwave Radiation in a Closed-Loop System Alone or in Combination with Radiotherapy. Cancers, 2020, 12, 1082.	3.7	23
38	Low-dose radiation therapy for COVID-19 pneumopathy: what is the evidence?. Strahlentherapie Und Onkologie, 2020, 196, 679-682.	2.0	39
39	Integrating Loco-Regional Hyperthermia Into the Current Oncology Practice: SWOT and TOWS Analyses. Frontiers in Oncology, 2020, 10, 819.	2.8	46
40	Editorial: Radioimmunotherapy—Translational Opportunities and Challenges. Frontiers in Oncology, 2020, 10, 190.	2.8	4
41	Graphene Oxide Nanosheets for Localized Hyperthermia—Physicochemical Characterization, Biocompatibility, and Induction of Tumor Cell Death. Cells, 2020, 9, 776.	4.1	16
42	Combination of Gas Plasma and Radiotherapy Has Immunostimulatory Potential and Additive Toxicity in Murine Melanoma Cells in Vitro. International Journal of Molecular Sciences, 2020, 21, 1379.	4.1	31
43	Early Mortality of Brain Cancer Patients and its Connection to Cytomegalovirus Reactivation During Radiochemotherapy. Clinical Cancer Research, 2020, 26, 3259-3270.	7.0	13
44	Immune biological rationales for the design of combined radio- and immunotherapies. Cancer Immunology, Immunotherapy, 2020, 69, 293-306.	4.2	39
45	Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. , 2020, 8, e000337.		610
46	Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nature Communications, 2020, 11, 1995.	12.8	253
47	Olanzapine combined with 5-hydroxytryptamine type 3 receptor antagonist (5-HT3 RA) plus dexamethasone for prevention and treatment of chemotherapy-induced nausea and vomiting in high and moderate emetogenic chemotherapy: a systematic review and meta-analysis of randomised controlled trials FSMO Open 2020 5 e000621	4.5	18
48	A multicenter phase II trial of the combination cisplatin/ docetaxel/durvalumab/tremelimumab as single-cycle induction treatment in locally advanced HNSCC (CheckRad-CD8 trial) Journal of Clinical Oncology, 2020, 38, 6519-6519.	1.6	3
49	Radiobiological Principles of Radiotherapy for Benign Diseases. , 2020, , 1-15.		0
50	Ionizing radiation reduces the capacity of activated macrophages to induce T-cell proliferation, but does not trigger dendritic cell-mediated non-targeted effects. International Journal of Radiation Biology, 2019, 95, 33-43.	1.8	12
51	Low-Dose Irradiation Differentially Impacts Macrophage Phenotype in Dependence of Fibroblast-Like Synoviocytes and Radiation Dose. Journal of Immunology Research, 2019, 2019, 1-11.	2.2	24
52	Radiotherapy-Induced Changes in the Systemic Immune and Inflammation Parameters of Head and Neck Cancer Patients. Cancers, 2019, 11, 1324.	3.7	32
53	Tumor Cell-Based Vaccine Generated With High Hydrostatic Pressure Synergizes With Radiotherapy by Generating a Favorable Anti-tumor Immune Microenvironment. Frontiers in Oncology, 2019, 9, 805.	2.8	14

54 Immune Modulatory Effects of Radiotherapy. , 2019, , 1-12.

4

#	Article	IF	CITATIONS
55	Development and Validation of an RNA-Seq-Based Prognostic Signature in Neuroblastoma. Frontiers in Oncology, 2019, 9, 1361.	2.8	32
56	Low-dose radiotherapy: Mayday, mayday. We've been hit!. Strahlentherapie Und Onkologie, 2019, 195, 285-288.	2.0	32
57	One-Tube Multicolor Flow Cytometry Assay (OTMA) for Comprehensive Immunophenotyping of Peripheral Blood. Methods in Molecular Biology, 2019, 1904, 189-212.	0.9	15
58	Temporarily increased TGFβ following radon spa correlates with reduced pain while serum IL-18 is a general predictive marker for pain sensitivity. Radiation and Environmental Biophysics, 2019, 58, 129-135.	1.4	16
59	Impact of radon and combinatory radon/carbon dioxide spa on pain and hypertension: Results from the explorative RAD-ON01 study. Modern Rheumatology, 2019, 29, 165-172.	1.8	22
60	Physical Plasma Elicits Immunogenic Cancer Cell Death and Mitochondrial Singlet Oxygen. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 138-146.	3.7	51
61	Immune modulatory effects of radiotherapy as basis for well-reasoned radioimmunotherapies. Strahlentherapie Und Onkologie, 2018, 194, 509-519.	2.0	93
62	Clinically Relevant Radiation Exposure Differentially Impacts Forms of Cell Death in Human Cells of the Innate and Adaptive Immune System. International Journal of Molecular Sciences, 2018, 19, 3574.	4.1	68
63	Comparative study and simulation of tumor cell inactivation by microwave and conventional heating. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2018, 37, 1893-1904.	0.9	4
64	Low-Dose Radiotherapy Has No Harmful Effects on Key Cells of Healthy Non-Inflamed Joints. International Journal of Molecular Sciences, 2018, 19, 3197.	4.1	24
65	Low-Dose Radiotherapy Ameliorates Advanced Arthritis in hTNF-α tg Mice by Particularly Positively Impacting on Bone Metabolism. Frontiers in Immunology, 2018, 9, 1834.	4.8	37
66	Modulation of the peripheral immune system after low-dose radon spa therapy: Detailed longitudinal immune monitoring of patients within the RAD-ON01 study. Autoimmunity, 2017, 50, 133-140.	2.6	50
67	Immunomodulation by ionizing radiation—impact for design of radioâ€immunotherapies and for treatment of inflammatory diseases. Immunological Reviews, 2017, 280, 231-248.	6.0	140
68	A clinician's plea to test glioma patients for CMV. Neuro-Oncology, 2017, 19, 1282-1283.	1.2	3
69	Static and Dynamic, but not Pulsed Highâ€Pressure Treatment Efficiently Inactivates Yeast. Chemical Engineering and Technology, 2017, 40, 130-137.	1.5	3
70	06.06â€Low dose radiation alters the inflammatory phenotype of fibroblast-like synoviocytes and macrophages and stimulates osteoblasts. , 2017, , .		0
71	Hypofractionated Irradiation Has Immune Stimulatory Potential and Induces a Timely Restricted Infiltration of Immune Cells in Colon Cancer Tumors. Frontiers in Immunology, 2017, 8, 231.	4.8	87
72	Basics of Radiation Biology When Treating Hyperproliferative Benign Diseases. Frontiers in Immunology, 2017, 8, 519.	4.8	26

#	Article	IF	CITATIONS
73	Full Length Interleukin 33 Aggravates Radiation-Induced Skin Reaction. Frontiers in Immunology, 2017, 8, 722.	4.8	9
74	Decrease of Markers Related to Bone Erosion in Serum of Patients with Musculoskeletal Disorders after Serial Low-Dose Radon Spa Therapy. Frontiers in Immunology, 2017, 8, 882.	4.8	29
75	Modulations in the Peripheral Immune System of Glioblastoma Patient Is Connected to Therapy and Tumor Progression—A Case Report from the IMMO-GLIO-01 Trial. Frontiers in Neurology, 2017, 8, 296.	2.4	17
76	Interconnection between DNA damage senescence inflammation and cancer. Frontiers in Bioscience - Landmark, 2017, 22, 348-369.	3.0	24
77	Editorial: Radiation and the Immune System: Current Knowledge and Future Perspectives. Frontiers in Immunology, 2017, 8, 1933.	4.8	34
78	Study of the impact of cytomegalovirus-encephalopathy on survival of brain cancer patients undergoing treatment with radio(chemo)therapy Journal of Clinical Oncology, 2017, 35, 2036-2036.	1.6	0
79	Chemoradiation Increases PD-L1 Expression in Certain Melanoma and Glioblastoma Cells. Frontiers in Immunology, 2016, 7, 610.	4.8	111
80	Modern Radiotherapy Concepts and the Impact of Radiation on Immune Activation. Frontiers in Oncology, 2016, 6, 141.	2.8	110
81	Development of a Modular Assay for Detailed Immunophenotyping of Peripheral Human Whole Blood Samples by Multicolor Flow Cytometry. International Journal of Molecular Sciences, 2016, 17, 1316.	4.1	63
82	A novel HSP90 inhibitor with reduced hepatotoxicity synergizes with radiotherapy to induce apoptosis, abrogate clonogenic survival, and improve tumor control in models of colorectal cancer. Oncotarget, 2016, 7, 43199-43219.	1.8	24
83	Drug priming enhances radiosensitivity of adamantinomatous craniopharyngioma via downregulation of survivin. Neurosurgical Focus, 2016, 41, E14.	2.3	9
84	Cancer Cell Death-Inducing Radiotherapy: Impact on Local Tumour Control, Tumour Cell Proliferation and Induction of Systemic Anti-tumour Immunity. Advances in Experimental Medicine and Biology, 2016, 930, 151-172.	1.6	9
85	Frequent occurrence of therapeutically reversible CMV-associated encephalopathy during radiotherapy of the brain. Neuro-Oncology, 2016, 18, 1664-1672.	1.2	21
86	The dual role of NK cells in antitumor reactions triggered by ionizing radiation in combination with hyperthermia. Oncolmmunology, 2016, 5, e1101206.	4.6	31
87	Rsk2 controls synovial fibroblast hyperplasia and the course of arthritis. Annals of the Rheumatic Diseases, 2016, 75, 413-421.	0.9	25
88	Combination of ionising radiation with hyperthermia increases the immunogenic potential of B16-F10 melanoma cells <i>in vitro</i> and <i>in vivo</i> . International Journal of Hyperthermia, 2016, 32, 23-30.	2.5	57
89	Primary glioblastoma multiforme tumors and recurrence. Strahlentherapie Und Onkologie, 2016, 192, 146-155.	2.0	34
90	Immune-modulating properties of ionizing radiation: rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors. Cancer Immunology, Immunotherapy, 2016, 65, 779-786.	4.2	129

#	Article	IF	CITATIONS
91	Key mechanisms involved in ionizing radiation-induced systemic effects. A current review. Toxicology Research, 2016, 5, 12-33.	2.1	71
92	Frequent occurrence of therapeutically reversible cmv-associated encephalopathy during radiotherapy of the brain Journal of Clinical Oncology, 2016, 34, e13507-e13507.	1.6	0
93	The in vitro immunogenic potential of caspase-3 proficient breast cancer cells with basal low immunogenicity is increased by hypofractionated irradiation. Radiation Oncology, 2015, 10, 197.	2.7	14
94	The Immune System in Cancer Prevention, Development and Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2015, 16, 101-107.	1.7	103
95	Radio-Immunotherapy-Induced Immunogenic Cancer Cells as Basis for Induction of Systemic Anti-Tumor Immune Responses – Pre-Clinical Evidence and Ongoing Clinical Applications. Frontiers in Immunology, 2015, 6, 505.	4.8	86
96	Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Frontiers in Immunology, 2015, 6, 588.	4.8	317
97	Modulation of inflammation by low and high doses of ionizing radiation: Implications for benign and malign diseases. Cancer Letters, 2015, 368, 230-237.	7.2	108
98	Heat Shock Protein 70 (Hsp70) Peptide Activated Natural Killer (NK) Cells for the Treatment of Patients with Non-Small Cell Lung Cancer (NSCLC) after Radiochemotherapy (RCTx) – From Preclinical Studies to a Clinical Phase II Trial. Frontiers in Immunology, 2015, 6, 162.	4.8	87
99	Radiotherapy for benign achillodynia. Strahlentherapie Und Onkologie, 2015, 191, 979-984.	2.0	22
100	Radio-immunotherapy: the focused beam expands. Lancet Oncology, The, 2015, 16, 742-743.	10.7	16
101	Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future. Cancer Treatment Reviews, 2015, 41, 742-753.	7.7	414
102	Study of the anti-inflammatory effects of low-dose radiation. Strahlentherapie Und Onkologie, 2015, 191, 742-749.	2.0	55
103	Apoptotic Cell Clearance and Its Role in the Origin and Resolution of Chronic Inflammation. Frontiers in Immunology, 2015, 6, 139.	4.8	8
104	Enhanced tumour regression in a patient of liposarcoma treated with radiotherapy and hyperthermia: Hint for dynamic immunomodulation by hyperthermia. International Journal of Hyperthermia, 2015, 31, 574-577.	2.5	13
105	Contribution of the immune system to bystander and non-targeted effects of ionizing radiation. Cancer Letters, 2015, 356, 105-113.	7.2	113
106	Adhesion Molecule Expression and Function of Primary Endothelial Cells in Benign and Malignant Tissues Correlates with Proliferation. PLoS ONE, 2014, 9, e91808.	2.5	20
107	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	4.6	686
108	Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy, 2014, 6, 597-610.	2.0	63

#	Article	IF	CITATIONS
109	Antitumor immune responses induced by ionizing irradiation and further immune stimulation. Cancer Immunology, Immunotherapy, 2014, 63, 29-36.	4.2	126
110	Norm- and hypo-fractionated radiotherapy is capable of activating human dendritic cells. Journal of Immunotoxicology, 2014, 11, 328-336.	1.7	65
111	Immunological aspects of radiotherapy. Radiation Oncology, 2014, 9, 185.	2.7	37
112	Radiotherapy for benign calcaneodynia. Strahlentherapie Und Onkologie, 2014, 190, 671-675.	2.0	38
113	Fractionated radiotherapy is the main stimulus for the induction of cell death and of Hsp70 release of p53 mutated glioblastoma cell lines. Radiation Oncology, 2014, 9, 89.	2.7	63
114	Low and moderate doses of ionizing radiation up to 2 Gy modulate transmigration and chemotaxis of activated macrophages, provoke an anti-inflammatory cytokine milieu, but do not impact upon viability and phagocytic function. Clinical and Experimental Immunology, 2014, 179, 50-61.	2.6	101
115	UVB-irradiated apoptotic cells induce accelerated growth of co-implanted viable tumor cells in immune competent mice. Autoimmunity, 2013, 46, 317-322.	2.6	26
116	Reduced secretion of the inflammatory cytokine IL-1β by stimulated peritoneal macrophages of radiosensitive Balb/c mice after exposure to 0.5 or 0.7Gy of ionizing radiation. Autoimmunity, 2013, 46, 323-328.	2.6	26
117	How Does Ionizing Irradiation Contribute to the Induction of Anti-Tumor Immunity?. Frontiers in Oncology, 2012, 2, 75.	2.8	71
118	Selected anti-tumor vaccines merit a place in multimodal tumor therapies. Frontiers in Oncology, 2012, 2, 132.	2.8	23
119	Immunomodulatory Properties and Molecular Effects in Inflammatory Diseases of Low-Dose X-Irradiation. Frontiers in Oncology, 2012, 2, 120.	2.8	97
120	EDITORIAL [Hot Topic: Modulation of the Immune System by Ionizing Irradiation and Chemotherapeutic Agents - Contribution of Immune Activation and Blocking of Immune Suppression to Cancer Therapy Success (Guest Editor: Udo S. Gaipl)]. Current Medicinal Chemistry, 2012, 19, 1739-1740.	2.4	4
121	Low dose ionising radiation leads to a NF-κB dependent decreased secretion of active IL-1β by activated macrophages with a discontinuous dose-dependency. International Journal of Radiation Biology, 2012, 88, 727-734.	1.8	70
122	Old and new facts about hyperthermia-induced modulations of the immune system. International Journal of Hyperthermia, 2012, 28, 528-542.	2.5	206
123	Combined treatment of human colorectal tumor cell lines with chemotherapeutic agents and ionizing irradiation can <i>in vitro</i> induce tumor cell death forms with immunogenic potential. Journal of Immunotoxicology, 2012, 9, 301-313.	1.7	39
124	Radiation combined with hyperthermia induces HSP70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages. Radiotherapy and Oncology, 2011, 101, 109-115.	0.6	89
125	The immune functions of phosphatidylserine in membranes of dying cells and microvesicles. Seminars in Immunopathology, 2011, 33, 497-516.	6.1	78
126	Sodium Overload and Water Influx Activate the NALP3 Inflammasome. Journal of Biological Chemistry, 2011, 286, 35-41.	3.4	162

#	Article	IF	CITATIONS
127	Identification of Novel Binding Partners (Annexins) for the Cell Death Signal Phosphatidylserine and Definition of Their Recognition Motif. Journal of Biological Chemistry, 2011, 286, 5708-5716.	3.4	45
128	Combination of Ionising Irradiation and Hyperthermia Activates Programmed Apoptotic and Necrotic Cell Death Pathways in Human Colorectal Carcinoma Cells. Strahlentherapie Und Onkologie, 2010, 186, 587-599.	2.0	52
129	<i>Ex vivo</i> – and <i>in vivo</i> –induced dead tumor cells as modulators of antitumor responses. Annals of the New York Academy of Sciences, 2010, 1209, 109-117.	3.8	25
130	Application of hyperthermia in addition to ionizing irradiation fosters necrotic cell death and HMGB1 release of colorectal tumor cells. Biochemical and Biophysical Research Communications, 2010, 391, 1014-1020.	2.1	53
131	Discontinuous induction of X-linked inhibitor of apoptosis in EA.hy.926 endothelial cells is linked to NF-κB activation and mediates the anti-inflammatory properties of low-dose ionising-radiation. Radiotherapy and Oncology, 2010, 97, 346-351.	0.6	44
132	Waste: An important immune modulator. Autoimmunity, 2009, 42, 250-250.	2.6	3
133	The immune reaction against allogeneic necrotic cells is reduced in Annexin A5 knock out mice whose macrophages display an antiâ€inflammatory phenotype. Journal of Cellular and Molecular Medicine, 2009, 13, 1391-1399.	3.6	25
134	Remnants of secondarily necrotic cells fuel inflammation in systemic lupus erythematosus. Arthritis and Rheumatism, 2009, 60, 1733-1742.	6.7	107
135	Hyperthermia in combination with X-irradiation induces inflammatory forms of cell death. Autoimmunity, 2009, 42, 311-313.	2.6	22
136	AnnexinA5 renders dead tumor cells immunogenic—implications for multimodal cancer therapies. Journal of Immunotoxicology, 2009, 6, 209-216.	1.7	43
137	Activator protein 1 shows a biphasic induction and transcriptional activity after low dose X-irradiation in EA.hy.926 endothelial cells. Autoimmunity, 2009, 42, 343-345.	2.6	26
138	Phospholipids: Key Players in Apoptosis and Immune Regulation. Molecules, 2009, 14, 4892-4914.	3.8	126
139	Cells Under Pressure – Treatment of Eukaryotic Cells with High Hydrostatic Pressure, from Physiologic Aspects to Pressure Induced Cell Death. Current Medicinal Chemistry, 2008, 15, 2329-2336.	2.4	58
140	Modulation of the immune system by dying cells and the phosphatidylserine-ligand annexin A5. Autoimmunity, 2007, 40, 254-259.	2.6	27
141	The Role of Annexin A5 in the Modulation of the Immune Response Against Dying and Dead Cells. Current Medicinal Chemistry, 2007, 14, 271-277.	2.4	67
142	The influence on the immunomodulatory effects of dying and dead cells of Annexin V. Journal of Leukocyte Biology, 2007, 81, 6-14.	3.3	47
143	Clearance deficiency and systemic lupus erythematosus (SLE). Journal of Autoimmunity, 2007, 28, 114-121.	6.5	260
144	Isolated Anxa5+/Sca-1+ perivascular cells from mouse meningeal vasculature retain their perivascular phenotype in vitro and in vivo. Experimental Cell Research, 2007, 313, 2730-2743.	2.6	39

#	Article	IF	CITATIONS
145	Apoptosis and autoimmunity: When apoptotic cells break their silence. Current Rheumatology Reports, 2006, 8, 245-247.	4.7	30
146	Involvement of phosphatidylserine, αvβ3, CD14, CD36, and complement C1q in the phagocytosis of primary necrotic lymphocytes by macrophages. Arthritis and Rheumatism, 2006, 54, 927-938.	6.7	82
147	Lectins detect changes of the glycosylation status of plasma membrane constituents during late apoptosis. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2006, 69A, 230-239.	1.5	52
148	Removal of dying cells and systemic lupus erythematosus. Modern Rheumatology, 2005, 15, 383-390.	1.8	27
149	Impaired clearance of dying cells in systemic lupus erythematosus. Autoimmunity Reviews, 2005, 4, 189-194.	5.8	183
150	The low-throughput protein A adsorber: an immune modulatory device. Hypothesis for the mechanism of action in the treatment of rheumatoid arthritis. Modern Rheumatology, 2005, 15, 9-18.	1.8	6
151	Inhibition of Phosphatidylserine Recognition Heightens the Immunogenicity of Irradiated Lymphoma Cells In Vivo. Journal of Experimental Medicine, 2004, 200, 1157-1165.	8.5	159
152	Defects in the disposal of dying cells lead to autoimmunity. Current Rheumatology Reports, 2004, 6, 401-407.	4.7	33
153	Cooperation between C1q and DNase I in the clearance of necrotic cell-derived chromatin. Arthritis and Rheumatism, 2004, 50, 640-649.	6.7	96
154	UV or X-Irradiation Increases the Cytoplasmic Accumulation of Rhodamine 123 in Various Cancer Cell Lines. Strahlentherapie Und Onkologie, 2003, 179, 564-570.	2.0	2
155	Disposal of dying cells: A balancing act between infection and autoimmunity. Arthritis and Rheumatism, 2003, 48, 6-11.	6.7	36
156	Exposure of anionic phospholipids serves as anti-inflammatory and immunosuppressive signal ? implications for antiphospholipid syndrome and systemic lupus erythematosus. Immunobiology, 2003, 207, 73-81.	1.9	50
157	Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis and Rheumatism, 2002, 46, 191-201.	6.7	507