Danilo Roberti Alves de Almeida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6581169/publications.pdf

Version: 2024-02-01

53 papers 1,566 citations

304602 22 h-index 330025 37 g-index

54 all docs

54 docs citations

54 times ranked 2199 citing authors

#	Article	IF	CITATIONS
1	Large scale multi-layer fuel load characterization in tropical savanna using GEDI spaceborne lidar data. Remote Sensing of Environment, 2022, 268, 112764.	4.6	27
2	Multifunctional soil recovery during the restoration of Brazil's Atlantic Forest after bauxite mining. Journal of Applied Ecology, 2022, 59, 2262-2273.	1.9	7
3	High-Density UAV-LiDAR in an Integrated Crop-Livestock-Forest System: Sampling Forest Inventory or Forest Inventory Based on Individual Tree Detection (ITD). Drones, 2022, 6, 48.	2.7	10
4	A Conceptual Model for Detecting Small-Scale Forest Disturbances Based on Ecosystem Morphological Traits. Remote Sensing, 2022, 14, 933.	1.8	4
5	Applying High-Resolution UAV-LiDAR and Quantitative Structure Modelling for Estimating Tree Attributes in a Crop-Livestock-Forest System. Land, 2022, 11, 507.	1.2	6
6	Resource availability and disturbance shape maximum tree height across the Amazon. Global Change Biology, 2021, 27, 177-189.	4.2	26
7	Light- and nutrient-related relationships in mixed plantations of Eucalyptus and a high diversity of native tree species. New Forests, 2021, 52, 807-828.	0.7	2
8	Beyond trees: Mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data. Forest Ecology and Management, 2021, 491, 119155.	1.4	24
9	Repeatability of the searching process in reviews of restoration outcomes. Restoration Ecology, 2021, 29, e13496.	1.4	9
10	Monitoring restored tropical forest diversity and structure through UAV-borne hyperspectral and lidar fusion. Remote Sensing of Environment, 2021, 264, 112582.	4.6	61
11	Impacts of selective logging on Amazon forest canopy structure and biomass with a LiDAR and photogrammetric survey sequence. Forest Ecology and Management, 2021, 500, 119648.	1.4	13
12	Fusion of Lidar and Hyperspectral Data from Drones for Ecological Questions: The Gatoreye Atlantic Forest Restoration Case Study., 2021,,.		1
13	Qualifying the Information Detected from Airborne Laser Scanning to Support Tropical Forest Management Operational Planning. Forests, 2021, 12, 1724.	0.9	1
14	Effect of rosewood plantation chronosequence on soil attributes in Central Amazonia. Geoderma, 2020, 357, 113952.	2.3	8
15	A new era in forest restoration monitoring. Restoration Ecology, 2020, 28, 8-11.	1.4	37
16	Evaluating tropical forest classification and field sampling stratification from lidar to reduce effort and enable landscape monitoring. Forest Ecology and Management, 2020, 457, 117634.	1.4	13
17	Forest inventory with high-density UAV-Lidar: Machine learning approaches for predicting individual tree attributes. Computers and Electronics in Agriculture, 2020, 179, 105815.	3.7	63
18	Detecting successional changes in tropical forest structure using GatorEye droneâ€borne lidar. Biotropica, 2020, 52, 1155-1167.	0.8	22

#	Article	IF	Citations
19	Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. Forest Ecology and Management, 2020, 475, 118397.	1.4	98
20	Reframing tropical savannization: linking changes in canopy structure to energy balance alterations that impact climate. Ecosphere, 2020, 11, e03231.	1.0	24
21	Single-Pass UAV-Borne GatorEye LiDAR Sampling as a Rapid Assessment Method for Surveying Forest Structure. Remote Sensing, 2020, 12, 4111.	1.8	13
22	Is the methodology used in reviews of restoration outcomes reliable? A systematic map protocol. Ecological Solutions and Evidence, 2020, 1, e12030.	0.8	6
23	Assessing the utility of airborne laser scanning derived indicators for tropical forest management. Southern Forests, 2020, 82, 352-358.	0.2	2
24	Postfire Tree Structure from High-Resolution LiDAR and RBR Sentinel 2A Fire Severity Metrics in a Pinus halepensis-Dominated Burned Stand. Remote Sensing, 2020, 12, 3554.	1.8	9
25	Individual Tree Attribute Estimation and Uniformity Assessment in Fast-Growing Eucalyptus spp. Forest Plantations Using Lidar and Linear Mixed-Effects Models. Remote Sensing, 2020, 12, 3599.	1.8	21
26	Standardizing Ecosystem Morphological Traits from 3D Information Sources. Trends in Ecology and Evolution, 2020, 35, 656-667.	4.2	72
27	Comparison of Statistical Modelling Approaches for Estimating Tropical Forest Aboveground Biomass Stock and Reporting Their Changes in Low-Intensity Logging Areas Using Multi-Temporal LiDAR Data. Remote Sensing, 2020, 12, 1498.	1.8	24
28	Combined Impact of Sample Size and Modeling Approaches for Predicting Stem Volume in Eucalyptus spp. Forest Plantations Using Field and LiDAR Data. Remote Sensing, 2020, 12, 1438.	1.8	23
29	Measuring Individual Tree Diameter and Height Using GatorEye High-Density UAV-Lidar in an Integrated Crop-Livestock-Forest System. Remote Sensing, 2020, 12, 863.	1.8	104
30	Aboveground Biomass Estimation in Amazonian Tropical Forests: a Comparison of Aircraft- and GatorEye UAV-borne LiDAR Data in the Chico Mendes Extractive Reserve in Acre, Brazil. Remote Sensing, 2020, 12, 1754.	1.8	25
31	Ecological outcomes of agroforests and restoration 15 years after planting. Restoration Ecology, 2020, 28, 1135-1144.	1.4	19
32	Emerging threats linking tropical deforestation and the COVID-19 pandemic. Perspectives in Ecology and Conservation, 2020, 18, 243-246.	1.0	65
33	Evaluating observed versus predicted forest biomass: R-squared, index of agreement or maximal information coefficient?. European Journal of Remote Sensing, 2019, 52, 345-358.	1.7	19
34	Persistent effects of fragmentation on tropical rainforest canopy structure after 20Âyr of isolation. Ecological Applications, 2019, 29, e01952.	1.8	45
35	F <scp>orest</scp> G <scp>ap</scp> R: An <scp>r</scp> Package for forest gap analysis from canopy height models. Methods in Ecology and Evolution, 2019, 10, 1347-1356.	2.2	45
36	Optimizing the Remote Detection of Tropical Rainforest Structure with Airborne Lidar: Leaf Area Profile Sensitivity to Pulse Density and Spatial Sampling. Remote Sensing, 2019, 11, 92.	1.8	69

#	Article	IF	CITATIONS
37	Monitoring the structure of forest restoration plantations with a drone-lidar system. International Journal of Applied Earth Observation and Geoinformation, 2019, 79, 192-198.	1.4	81
38	The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. Forest Ecology and Management, 2019, 438, 34-43.	1.4	70
39	Monitoring The Brazilian Savanna with lidar and RGB Sensors Onboard Remotely Piloted Aircraft Systems. , 2019, , .		1
40	Towards high throughput assessment of canopy dynamics: The estimation of leaf area structure in Amazonian forests with multitemporal multi-sensor airborne lidar. Remote Sensing of Environment, 2019, 221, 1-13.	4.6	25
41	New information for managing Copaifera multijuga Hayne for oleoresin yield. Forest Ecology and Management, 2018, 414, 85-98.	1.4	13
42	High diversity mixed plantations of Eucalyptus and native trees: An interface between production and restoration for the tropics. Forest Ecology and Management, 2018, 417, 247-256.	1.4	51
43	Early ecological outcomes of natural regeneration and tree plantations for restoring agricultural landscapes. Ecological Applications, 2018, 28, 373-384.	1.8	35
44	Nearâ€infrared spectrometry allows fast and extensive predictions of functional traits from dry leaves and branches. Ecological Applications, 2018, 28, 1157-1167.	1.8	18
45	Changes in rosewood (Aniba rosaeodora Ducke) essential oil in response to management of commercial plantations in Central Amazonia. Forest Ecology and Management, 2018, 429, 143-157.	1.4	7
46	Fake legal logging in the Brazilian Amazon. Science Advances, 2018, 4, eaat1192.	4.7	75
47	Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation. Ecological Modelling, 2017, 366, 15-26.	1.2	38
48	Discrimination of taxonomic identity at species, genus and family levels using Fourier Transformed Near-Infrared Spectroscopy (FT-NIR). Forest Ecology and Management, 2017, 406, 219-227.	1.4	38
49	New Allometric Equations to Support Sustainable Plantation Management of Rosewood (Aniba) Tj ETQq1 1 0.78	4314 rgB ⁻ 0.9	「/Qverlock 10
50	Sequential Management of Commercial Rosewood (Aniba rosaeodora Ducke) Plantations in Central Amazonia: Seeking Sustainable Models for Essential Oil Production. Forests, 2017, 8, 438.	0.9	8
51	EUCALYPTUS STAND SAMPLE PLOTS COMPARED: FIXED AREA AND FIXED NUMBER OF TREES. Revista Arvore, 2016, 40, 529-533.	0.5	O
52	Contrasting fire damage and fire susceptibility between seasonally flooded forest and upland forest in the Central Amazon using portable profiling LiDAR. Remote Sensing of Environment, 2016, 184, 153-160.	4.6	49
53	Fire Damage in Seasonally Flooded and Upland Forests of the Central Amazon. Biotropica, 2014, 46, 643-646.	0.8	32