Thomas Voisin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6580827/publications.pdf Version: 2024-02-01

THOMAS VOISIN

#	Article	IF	CITATIONS
1	Pitting Corrosion in 316L Stainless Steel Fabricated by Laser Powder Bed Fusion Additive Manufacturing: A Review and Perspective. Jom, 2022, 74, 1668-1689.	1.9	27
2	Critical differences between electron beam melted and selective laser melted Ti-6Al-4ÂV. Materials and Design, 2022, 216, 110533.	7.0	11
3	New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion. Acta Materialia, 2021, 203, 116476.	7.9	234
4	Elaboration of Metallic Materials by SPS: Processing, Microstructures, Properties, and Shaping. Metals, 2021, 11, 322.	2.3	14
5	Hydrogen uptake and its influence in selective laser melted austenitic stainless steel: A nanoindentation study. Scripta Materialia, 2021, 194, 113718.	5.2	20
6	Heavy ion irradiation response of an additively manufactured 316LN stainless steel. Journal of Nuclear Materials, 2021, 546, 152745.	2.7	16
7	Investigation of UV, ns-laser damage resistance of hafnia films produced by electron beam evaporation and ion beam sputtering deposition methods. Journal of Applied Physics, 2021, 130, 043103.	2.5	2
8	Nondiffractive beam shaping for enhanced optothermal control in metal additive manufacturing. Science Advances, 2021, 7, eabg9358.	10.3	47
9	Ultra-low-density digitally architected carbon with a strutted tube-in-tube structure. Nature Materials, 2021, 20, 1498-1505.	27.5	28
10	In situ TEM observations of high-strain-rate deformation and fracture in pure copper. Materials Today, 2020, 33, 10-16.	14.2	19
11	A 3D nm-thin biomimetic membrane for ultimate molecular separation. Materials Horizons, 2020, 7, 2422-2430.	12.2	1
12	Understanding the High Strength of L-PBF Metals Using in and ex situ Characterization by TEM and Synchrotron XRD. Microscopy and Microanalysis, 2019, 25, 2560-2561.	0.4	1
13	Microscale residual stresses in additively manufactured stainless steel. Nature Communications, 2019, 10, 4338.	12.8	120
14	Tensile properties, strain rate sensitivity, and activation volume of additively manufactured 316L stainless steels. International Journal of Plasticity, 2019, 120, 395-410.	8.8	155
15	Response of solidification cellular structures in additively manufactured 316 stainless steel to heavy ion irradiation: an <i>in situ</i> study. Materials Research Letters, 2019, 7, 290-297.	8.7	26
16	Near-Net Shaping of Titanium-Aluminum Jet Engine Turbine Blades by SPS. , 2019, , 713-737.		4
17	The impact of nano-bubbles on the laser performance of hafnia films deposited by oxygen assisted ion beam sputtering method. Applied Physics Letters, 2019, 115, .	3.3	16
18	Additively manufactured hierarchical stainless steels with high strength and ductility. Nature Materials, 2018, 17, 63-71.	27.5	1,517

THOMAS VOISIN

#	Article	IF	CITATIONS
19	A processing diagram for high-density Ti-6Al-4V by selective laser melting. Rapid Prototyping Journal, 2018, 24, 1469-1478.	3.2	49
20	Defects-dictated tensile properties of selective laser melted Ti-6Al-4V. Materials and Design, 2018, 158, 113-126.	7.0	168
21	TEM sample preparation by femtosecond laser machining and ion milling for high-rate TEM straining experiments. Ultramicroscopy, 2017, 175, 1-8.	1.9	7
22	Precipitation strengthening in nanostructured AZ31B magnesium thin films characterized by nano-indentation, STEM/EDS, HRTEM, and in situ TEM tensile testing. Acta Materialia, 2017, 138, 174-184.	7.9	19
23	Development of a TiAl Alloy by Spark Plasma Sintering. Jom, 2017, 69, 2576-2582.	1.9	26
24	High Creep Resistance of Titanium Aluminides Sintered by SPS. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 17-22.	0.5	0
25	Deformation modes and size effect in near-γ TiAl alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 679, 123-132.	5.6	30
26	High-kinetic inductance additive manufactured superconducting microwave cavity. Applied Physics Letters, 2017, 111, .	3.3	6
27	DTEM In Situ Mechanical Testing: Defects Motion at High Strain Rates. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 209-213.	0.5	2
28	Mechanical Properties of the TiAl IRIS Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6097-6108.	2.2	28
29	Obtaining of a fine near-lamellar microstructure in TiAl alloys by Spark Plasma Sintering. Intermetallics, 2016, 71, 88-97.	3.9	29
30	In Situ High-Rate Mechanical Testing in the Dynamic Transmission Electron Microscope. Conference Proceedings of the Society for Experimental Mechanics, 2016, , 25-30.	0.5	1
31	An Innovative Way to Produce γâ€TiAl Blades: Spark Plasma Sintering. Advanced Engineering Materials, 2015, 17, 1408-1413.	3.5	61
32	Microstructures and mechanical properties of a multi-phase β-solidifying TiAl alloy densified by spark plasma sintering. Acta Materialia, 2014, 73, 107-115.	7.9	95
33	Refinement of lamellar microstructures by boron incorporation in GE-TiAl alloys processed by Spark Plasma Sintering. Intermetallics, 2013, 36, 12-20.	3.9	35
34	Temperature control during Spark Plasma Sintering and application to up-scaling and complex shaping. Journal of Materials Processing Technology, 2013, 213, 269-278.	6.3	97
35	First Investigations on a TNM TiAl Alloy Processed by Spark Plasma Sintering. Materials Research Society Symposia Proceedings, 2012, 1516, 17-22.	0.1	3