List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6580635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silver-doped calcium silicate sol-gel glasses with a cotton-wool-like structure for wound healing. Materials Science and Engineering C, 2022, 134, 112561.	7.3	7
2	Structure and dissolution behavior of boron-containing calcium phosphate invert glasses. Journal of Non-Crystalline Solids, 2022, 590, 121690.	3.1	2
3	Development of orthophosphosilicate glass/poly(lactic acid) composite anisotropic scaffolds for simultaneous reconstruction of bone quality and quantity. Journal of Biomedical Materials Research - Part A, 2021, 109, 788-803.	4.0	14
4	Potential of diatoms as phase change materials. Materials Letters, 2021, 282, 128673.	2.6	2
5	Design of silica-doped calcium carbonates and their composites for biomedical use. , 2021, , 245-260.		Ο
6	Electrospun cotton–wool-like silica/gelatin hybrids with covalent coupling. Journal of Sol-Gel Science and Technology, 2021, 97, 11-26.	2.4	4
7	Structures and Dissolution Behaviors of Quaternary CaO-SrO-P2O5-TiO2 Glasses. Materials, 2021, 14, 1736.	2.9	6
8	Regulating size of silver nanoparticles on calcium carbonate via ultrasonic spray for effective antibacterial efficacy and sustained release. Materials Science and Engineering C, 2021, 125, 112083.	7.3	10
9	Diffusion of protons and sodium ions in silicophosphate glasses: insight based on first-principles molecular dynamic simulations. Physical Chemistry Chemical Physics, 2021, 23, 14580-14586.	2.8	4
10	Surface modification of cotton-wool-like bone void fillers consisting of biodegradable polymer-based composite fibers containing calcium-salt particles. Results in Materials, 2021, 12, 100236.	1.8	1
11	Exfoliation Resistance, Microstructure, and Oxide Formation Mechanisms of the White Oxide Layer on CP Ti and Ti–Nb–Ta–Zr Alloys. Materials, 2021, 14, 6599.	2.9	1
12	Preparation of an antibacterial amorphous thin film by radiofrequency magnetron sputtering using a 65ZnO–30P2O5–5Nb2O5 glass. Journal of Non-Crystalline Solids, 2020, 528, 119724.	3.1	11
13	Removal of humic acid from aqueous solutions by a novel hydrogarnet/zeolite composite. SN Applied Sciences, 2020, 2, 1.	2.9	3
14	Coaxial Electrospun Fibermat of Poly(AM/DAAM)/ADH and PCL: Versatile Platform for Functioning Active Enzymes. Bulletin of the Chemical Society of Japan, 2020, 93, 1155-1163.	3.2	6
15	Three-Dimensional Cotton-Wool-Like Polyhydroxybutyrate/Siloxane-Doped Vaterite Composite Fibrous Scaffolds: Effect of Imogolite-Coating on Physicochemical and Cell Adhesion Properties. Frontiers in Materials, 2020, 7, .	2.4	2
16	Electrospinning 3D bioactive glasses for wound healing. Biomedical Materials (Bristol), 2020, 15, 015014.	3.3	30
17	Protein adsorption behaviors on siloxane-containing vaterite particles. Materials Letters, 2020, 264, 127280.	2.6	7
18	Heat transfer properties of <i>Morpho</i> butterfly wings and the dependence of these properties on the wing surface structure. RSC Advances, 2020, 10, 2786-2790.	3.6	5

#	Article	IF	CITATIONS
19	DISSOLUTION BEHAVIOR OF MgO-CaO-P2O5-TiO2 INVERT GLASSES. Phosphorus Research Bulletin, 2020, 36, 10-14.	0.6	2
20	Development of Scaffold Materials with Ion-releasing Ability for Stimulating Osteoblasts. Materia Japan, 2020, 59, 606-611.	0.1	0
21	Enhancing Wettability of Radio Frequency Magnetron-Sputtered Glass Films by Exploiting Structural Defects. Langmuir, 2019, 35, 11340-11344.	3.5	Ο
22	Development of bifunctional oriented bioactive glass/poly(lactic acid) composite scaffolds to control osteoblast alignment and proliferation. Journal of Biomedical Materials Research - Part A, 2019, 107, 1031-1041.	4.0	20
23	Combinatorial effects of inorganic ions on adhesion and proliferation of osteoblastâ€like cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 1042-1051.	4.0	28
24	Coatings for metallic biomaterials. , 2019, , 369-382.		1
25	Oriented siloxane-containing vaterite/poly(lactic acid) composite scaffolds for controlling osteoblast alignment and proliferation. Journal of Asian Ceramic Societies, 2019, 7, 228-237.	2.3	4
26	Wettability and dynamics of water droplet on a snail shell. Journal of Colloid and Interface Science, 2019, 547, 111-116.	9.4	5
27	Tuning of ion-release capability from bio-ceramic-polymer composites for enhancing cellular activity. Royal Society Open Science, 2019, 6, 190612.	2.4	9
28	Structural Analysis of 65ZnO–30P ₂ 0 ₅ –5Nb ₂ 0 <sub> Invert Glass Using X-ray Photoelectron Spectroscopy. Materials Transactions, 2019, 60, 1707-1710.</sub> 	:;5& lt;≱ sub&	kgt3
29	Structural effects of phosphate groups on apatite formation in a copolymer modified with Ca ²⁺ in a simulated body fluid. Journal of Materials Chemistry B, 2018, 6, 174-182.	5.8	7
30	Preparation of Calcium Phosphate Glasses Containing Nb ₂ O ₅ and TiO ₂ . Key Engineering Materials, 2018, 782, 47-52.	0.4	0
31	Structural changes in calcium silicate hydrate gel and resulting improvement in phosphate species removal properties after mechanochemical treatment. Royal Society Open Science, 2018, 5, 181403.	2.4	5
32	Adsorption behaviour of hydrogarnet for humic acid. Royal Society Open Science, 2018, 5, 172023.	2.4	6
33	Tailoring the delivery of therapeutic ions from bioactive scaffolds while inhibiting their apatite nucleation: a coaxial electrospinning strategy for soft tissue regeneration. RSC Advances, 2017, 7, 3992-3999.	3.6	8
34	Improving the biocompatibility of tobermorite by incorporating calcium phosphate clusters. Bio-Medical Materials and Engineering, 2017, 28, 31-36.	0.6	3
35	Preparation of orthophosphate glasses in the MgO–CaO–SiO2–Nb2O5–P2O5 system. Bio-Medical Materials and Engineering, 2017, 28, 23-30.	0.6	3
36	Synthesis and dissolution behaviour of CaO/SrO-containing sol–gel-derived 58S glasses. Journal of Materials Science, 2017, 52, 8858-8870.	3.7	17

#	Article	IF	CITATIONS
37	Construction of DNAzyme-Encapsulated Fibermats Using the Precursor Network Polymer of Poly(γ-glutamate) and 4-Glycidyloxypropyltrimethoxysilane. Langmuir, 2017, 33, 4028-4035.	3.5	6
38	Osteoblast-like cell responses to silicate ions released from 45S5-type bioactive glass and siloxane-doped vaterite. Journal of Materials Science, 2017, 52, 8942-8956.	3.7	18
39	Silica/methacrylate class II hybrid: telomerisation vs. RAFT polymerisation. Polymer Chemistry, 2017, 8, 3603-3611.	3.9	7
40	Experimental and Theoretical Investigation of the Structural Role of Titanium Oxide in CaO-P ₂ O ₅ –TiO ₂ Invert Glass. Journal of Physical Chemistry B, 2017, 121, 5433-5438.	2.6	16
41	Osteoblast-like cell responses to ion products released from magnesium- and silicate-containing calcium carbonates. Bio-Medical Materials and Engineering, 2017, 28, 47-56.	0.6	10
42	Utilization of diatom frustules for thermal management applications. Journal of Applied Phycology, 2017, 29, 1907-1911.	2.8	6
43	Interphase coordination design in carbamate-siloxane/vaterite composite microparticles towards tuning ion-releasing properties. Advanced Powder Technology, 2017, 28, 1349-1355.	4.1	4
44	Preparation of hybrids derived from zinc phosphate glasses and benzimidazole for anhydrous proton conduction applications. Journal of Materials Science, 2017, 52, 2263-2269.	3.7	2
45	Preparation of carbamate-containing vaterite particles for strontium removal in wastewater treatment. Journal of Asian Ceramic Societies, 2017, 5, 364-369.	2.3	6
46	Structure, dissolution behavior, cytocompatibility, and antibacterial activity of silver ontaining calcium phosphate invert glasses. Journal of Biomedical Materials Research - Part A, 2017, 105, 3127-3135.	4.0	17
47	Thermal properties of silica-based hybrids with different alkyl chains. Ceramics International, 2017, 43, 880-883.	4.8	1
48	Formation and structural analysis of 15MgO–15CaO–8P2O5–4SiO2 glass. Journal of Non-Crystalline Solids, 2017, 457, 73-76.	3.1	16
49	Thermal properties of clay-containing nanocomposite films. Journal of the Ceramic Society of Japan, 2017, 125, 919-921.	1.1	1
50	Structure and dissolution behavior of orthophosphate MgO–CaO–P 2 O 5 –Nb 2 O 5 glass and glass-ceramic. Materials Letters, 2016, 175, 135-138.	2.6	17
51	Fabrication and inÂvitro characterization of electrospun poly (γ-glutamic acid)-silica hybrid scaffolds for bone regeneration. Polymer, 2016, 91, 106-117.	3.8	28
52	Preparation of Antibacterial ZnO-CaO-P ₂ O ₅ -Nb ₂ O _{5Invert Glasses. Materials Transactions, 2016, 57, 2072-2076.})&gZ	15
53	Structure and physicochemical properties of CaO–P2O5–Nb2O5–Na2O glasses. Journal of Non-Crystalline Solids, 2016, 432, 60-64	3.1	34
54	Construction and Characterization of Protein-Encapsulated Electrospun Fibermats Prepared from a Silica/Poly(γ-glutamate) Hybrid. Langmuir, 2016, 32, 221-229.	3.5	15

#	Article	IF	CITATIONS
55	Structures and dissolution behaviors of MgO–CaO–P2O5–Nb2O5 glasses. Journal of Non-Crystalline Solids, 2016, 438, 18-25.	3.1	22
56	Adsorption behavior of proteins on calcium silicate hydrate in Tris and phosphate buffer solutions. Materials Letters, 2016, 167, 112-114.	2.6	5
57	Structure and dissolution behavior of MgO–P ₂ O ₅ –TiO _{2(Mg/P ≥ 1) invert glasses. Journal of the Ceramic Society of Japan, 2015, 123, 942-948.}	t;/Nb <su< td=""><td>b&gt;2</st</td></su<>	b& gt ;2</st
58	THE ROLE OF NIOBIUM IONS IN CALCIUM PHOSPHATE INVERT GLASSES FOR BONE REGENERATION. Phosphorus Research Bulletin, 2015, 30, 30-34.	0.6	0
59	Development of Magnesium and Siloxane-Containing Vaterite and Its Composite Materials for Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2015, 3, 195.	4.1	14
60	Preparation of Cotton-Wool-Like Poly(lactic acid)-Based Composites Consisting of Core-Shell-Type Fibers. Materials, 2015, 8, 7979-7987.	2.9	5
61	Dissolution behavior and cell compatibility of alkali-free MgO-CaO-SrO-TiO2-P2O5 glasses for biomedical applications. Biomedical Glasses, 2015, 1, .	2.4	8
62	Relationship between electrical conductivities and structure of hybrid materials derived from mixtures of zinc phosphate glasses with different phosphate-chain lengths and benzimidazole. Journal of Solid State Electrochemistry, 2015, 19, 907-912.	2.5	3
63	Bioactive Ceramic Coatings. Springer Series in Biomaterials Science and Engineering, 2015, , 103-126.	1.0	1
64	Structures and dissolution behaviors of CaO–P2O5–TiO2/Nb2O5 (Ca/P ≥ 1) invert glasses. Journal of Non-Crystalline Solids, 2015, 426, 35-42.	3.1	20
65	Proton conduction of MO-P2O5 glasses (MÂ=ÂZn, Ba) containing a large amount of water. Solid State Sciences, 2015, 45, 5-8.	3.2	14
66	Poly(l-lactic acid)/vaterite composite coatings on metallic magnesium. Journal of Materials Science: Materials in Medicine, 2014, 25, 2639-2647.	3.6	7
67	Preparation and Rheological Characterization of Imogolite Hydrogels. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	7
68	Color tone and interfacial microstructure of white oxide layer on commercially pure Ti and Ti–Nb–Ta–Zr alloys. Japanese Journal of Applied Physics, 2014, 53, 11RD02.	1.5	14
69	Changes in structure and thermal properties with phosphate content of ternary calcium sodium phosphate glasses. Journal of Non-Crystalline Solids, 2014, 392-393, 31-38.	3.1	43
70	Control of chemical composition of hydrogrossular prepared by hydrothermal reaction. Materials Letters, 2014, 131, 132-134.	2.6	9
71	Preparation of calcium pyrophosphate glass-ceramics containing Nb ₂ O ₅ . Journal of the Ceramic Society of Japan, 2014, 122, 122-124.	1.1	12
72	Preparation of siloxane-containing vaterite doped with magnesium. Journal of the Ceramic Society of Japan, 2014, 122, 1010-1015.	1.1	7

#	Article	IF	CITATIONS
73	Cotton wool-like poly(lactic acid)/vaterite composite scaffolds releasing soluble silica for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2013, 24, 1649-1658.	3.6	24
74	Tracking the formation of vaterite particles containing aminopropyl-functionalized silsesquioxane and their structure for bone regenerative medicine. Journal of Materials Chemistry B, 2013, 1, 4446.	5.8	38
75	Proton conductivities and structures of BaO–ZnO–P2O5 glasses in the ultraphosphate region for intermediate temperature fuel cells. International Journal of Hydrogen Energy, 2013, 38, 15354-15360.	7.1	8
76	Effects of magnesium for calcium substitution in P2O5–CaO–TiO2 glasses. Journal of Non-Crystalline Solids, 2013, 380, 53-59.	3.1	35
77	Cytocompatibility of Siloxane-Containing Vaterite/Poly(l-lactic acid) Composite Coatings on Metallic Magnesium. Materials, 2013, 6, 5857-5869.	2.9	5
78	Aluminum Silicate Nanotube Modification of Cotton-Like Siloxane-poly(L-lactic acid)-vaterite Composites. Advances in Materials Science and Engineering, 2013, 2013, 1-6.	1.8	1
79	White-Ceramic Conversion on Ti-29Nb-13Ta-4.6Zr Surface for Dental Applications. Advances in Materials Science and Engineering, 2013, 2013, 1-9.	1.8	10
80	Preparation of electrospun fiber mats using siloxane ontaining vaterite and biodegradable polymer hybrids for bone regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101, 1350-1358.	3.4	14
81	Aligned electrospun siloxane-doped vaterite/poly(<scp>l</scp> -lactide) composite fibremats: evaluation of their tensile strength and cell compatibility. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 2096-2109.	3.5	1
82	Preparation of siloxane-containing vaterite particles with red-blood-cell-like morphologies and incorporation of calcium-salt polylactide for bone regenerative medicine. Journal of the Ceramic Society of Japan, 2013, 121, 792-796.	1.1	5
83	Preparation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)-based composites releasing soluble silica for bone regeneration. Journal of the Ceramic Society of Japan, 2013, 121, 753-758.	1.1	6
84	Bioresorbable Hybrid Membranes for Bone Regeneration. , 2013, , 177-192.		0
85	Cellular Migration to Electrospun Poly(Lactic Acid) Fibermats. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1939-1950.	3.5	19
86	Aluminum Silicate Nanotube Coating of Siloxane-Poly(lactic acid)-Vaterite Composite Fibermats for Bone Regeneration. Journal of Nanomaterials, 2012, 2012, 1-7.	2.7	11
87	Effects of Niobium Ions Released from Calcium Phosphate Invert Glasses Containing Nb ₂ O ₅ on Osteoblast-Like Cell Functions. ACS Applied Materials & Interfaces, 2012, 4, 5684-5690.	8.0	70
88	Preparation of Electrospun Poly(Lactic Acid)-Based Hybrids Containing Siloxane-Doped Vaterite Particles for Bone Regeneration. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1369-1380.	3.5	7
89	Induction of hydroxycarbonate apatite formation on polyethylene or alumina substrates by spherical vaterite particles deposition. Materials Science and Engineering C, 2012, 32, 1976-1981.	7.3	2
90	Multicomponent phosphate invert glasses with improved processing. Journal of Non-Crystalline Solids, 2012, 358, 1720-1723.	3.1	15

#	Article	IF	CITATIONS
91	Siloxane-poly(lactic acid)-vaterite composites with 3D cotton-like structure. Journal of Materials Science: Materials in Medicine, 2012, 23, 2349-2357.	3.6	38
92	PHOSPHATE GLASSES AND GLASS-CERAMICS FOR BIOMEDICAL APPLICATIONS. Phosphorus Research Bulletin, 2012, 26, 8-15.	0.6	25
93	MECHANICAL-TENSILE STRENGTHS AND CELL-PROLIFERATIVE ACTIVITIES OF ELECTROSPUN POLY(LACTIC-co-GLYCOLIC ACID) COMPOSITES CONTAINING ^ ^beta;-TRICALCIUM PHOSPHATE. Phosphorus Research Bulletin, 2012, 26, 109-112.	0.6	0
94	Sintering and Crystallization of Phosphate Glasses by <scp><scp>CO₂</scp><‣aser Irradiation on Hydroxyapatite Ceramics. International Journal of Applied Ceramic Technology, 2012, 9, 541-549.</scp>	2.1	4
95	Preparation of proton-conducting hybrid materials by reacting zinc phosphate glass with benzimidazole. Materials Letters, 2012, 79, 109-111.	2.6	10
96	Cellular compatibility of a gamma-irradiated modified siloxane-poly(lactic acid)-calcium carbonate hybrid membrane for guided bone regeneration. Dental Materials Journal, 2011, 30, 730-738.	1.8	12
97	Effect of preparation route on the degradation behavior and ion releasability of siloxane-poly(lactic) Tj ETQq1 1 C 30, 232-238.).784314 1.8	rgBT /Overlo 15
98	Hydroxyapatite Coatings Incorporating Silicon Ion Releasing System on Titanium Prepared Using Water Glass and Vaterite. Journal of the American Ceramic Society, 2011, 94, 2074-2079.	3.8	11
99	Effects of Y2O3 particle size on cytotoxicity and cell morphology. Journal of the Ceramic Society of Japan, 2010, 118, 428-433.	1.1	10
100	Preparation of siloxane-containing vaterite/poly (L-lactic acid) hybrid microbeads with silicate and calcium ions-releasing ability. Journal of the Ceramic Society of Japan, 2010, 118, 541-544.	1.1	1
101	Preparation of siloxane-containing vaterite/poly (lactic acid) hybrid fibermats with improved ductility for bone regeneration. Journal of the Ceramic Society of Japan, 2010, 118, 623-625.	1.1	1
102	Electrospun microfiber meshes of silicon-doped vaterite/poly(lactic acid) hybrid for guided bone regeneration. Acta Biomaterialia, 2010, 6, 1248-1257.	8.3	91
103	Preparation of electrospun siloxane-poly(lactic acid)-vaterite hybrid fibrous membranes for guided bone regeneration. Composites Science and Technology, 2010, 70, 1889-1893.	7.8	17
104	PREPARATION OF SILOXANE-CONTAINING VATERITE â, POLY (LACTIC ACID) HYBRID BEADS BY ELECTROSPRAYING AND HA-COATING ON THEIR SURFACES. Phosphorus Research Bulletin, 2010, 24, 1-5.	0.6	0
105	PROTON CONDUCTING VISCOUS MATERIALS DERIVED FROM ZINC METAPHOSPHATE GLASS. Phosphorus Research Bulletin, 2010, 24, 26-31.	0.6	0
106	Stimulation of human mesenchymal stem cells and osteoblasts activities <i>in vitro</i> on siliconâ€releasable scaffolds. Journal of Biomedical Materials Research - Part A, 2009, 91A, 11-17.	4.0	31
107	Enhanced in vitro cell activity on silicon-doped vaterite/poly(lactic acid) composites. Acta Biomaterialia, 2009, 5, 57-62.	8.3	54
108	Preparation of a Calcium Titanium Phosphate Glass–Ceramic with Improved Chemical Durability. Journal of the American Ceramic Society, 2009, 92, 1709-1712.	3.8	14

#	Article	IF	CITATIONS
109	Preparation of poly(lactic acid)/siloxane/calcium carbonate composite membranes with antibacterial activity. Acta Biomaterialia, 2009, 5, 1163-1168.	8.3	25
110	An Anhydrous Proton-Conducting Material Prepared by Hybridizing Zinc Phosphate Glass with Imidazole. Electrochemical and Solid-State Letters, 2009, 12, B5.	2.2	5
111	New Fabrication Process of Layered Membranes Based on Poly(Lactic Acid) Fibers for Guided Bone Regeneration. Materials Transactions, 2009, 50, 1737-1741.	1.2	7
112	SiO2-CaO-P2O5 sol-gel-derived glass coating on porous .BETAtricalcium phosphate ceramics. Journal of the Ceramic Society of Japan, 2009, 117, 1120-1125.	1.1	2
113	Ion release from SrO-CaO-TiO2-P2O5 glasses in Tris buffer solution. Journal of the Ceramic Society of Japan, 2009, 117, 935-938.	1.1	24
114	Control of silicon species released from poly(lactic acid)â€polysiloxane hybrid membranes. Journal of Biomedical Materials Research - Part A, 2008, 85A, 742-746.	4.0	15
115	Cellular compatibility of boneâ€like apatite containing silicon species. Journal of Biomedical Materials Research - Part A, 2008, 85A, 140-144.	4.0	20
116	Preparation of porous titanium phosphate glass-ceramics for NH3 gas adsorption with self-cleaning ability. Journal of the European Ceramic Society, 2008, 28, 267-270.	5.7	29
117	Apatite-forming ability on titanium surface modified by hydrothermal treatment and ultraviolet irradiation. Journal of Materials Research, 2008, 23, 3169-3175.	2.6	9
118	Preparation of bone-like apatite coating on mullite ceramics with silicon-ion releasability. Journal of the Ceramic Society of Japan, 2008, 116, 14-19.	1.1	4
119	Characteristics of Biomedical Beta-Type Titanium Alloy Subjected to Coating. Materials Transactions, 2008, 49, 365-371.	1.2	7
120	Preparation of Poly(L-lactic Acid) Hybrid Membrane with Silicon-Ion-Releasing Ability. Key Engineering Materials, 2007, 330-332, 1305-1308.	0.4	1
121	Proton Conductivities of Zinc Phosphate Glass-Derived Hydrogels Controlled by Water Content. Journal of the Electrochemical Society, 2007, 154, 8258.	2.9	8
122	Cellular Activity on Siloxane-Doped Poly(Lactic Acid)/Vaterite Composite Scaffolds. Key Engineering Materials, 2007, 361-363, 399-402.	0.4	1
123	Silicon-Doped Bonelike Apatite / Poly(lactic acid) Composite. Key Engineering Materials, 2007, 330-332, 519-522.	0.4	0
124	Control of β-Tricalcium Phosphate Formation in Macroporous Phosphate Glass-Ceramic Composites. Materials Transactions, 2007, 48, 313-316.	1.2	4
125	Development of Phosphate Glass-Ceramics for Biomedical Applications. Journal of the Ceramic Society of Japan, 2007, 115, 455-459.	1.1	12
126	Hydrogen Gas Sensing Properties of Calcium Metaphosphate Glass-derived Hydrogels. Chemistry Letters, 2007, 36, 844-845.	1.3	1

#	Article	IF	CITATIONS
127	Preparation of Poly(lactic acid) Composite Hollow Spheres Containing Calcium Carbonate, .BETATricalcium Phosphate and Siloxane. Journal of the Ceramic Society of Japan, 2006, 114, 743-747.	1.3	4
128	Enhancement of Bone-Like Apatite Forming Abilities of Calcium Phosphate Ceramics in SBF by Autoclaving. Journal of the Ceramic Society of Japan, 2006, 114, 63-66.	1.3	6
129	Formation Mechanism of Zinc Metaphosphate Hydrogels by a Chemicovectorial Method and Their Proton Conductivities. Journal of the Ceramic Society of Japan, 2006, 114, 92-96.	1.3	7
130	Preparation of poly(lactic acid) composite hollow spheres containing calcium carbonates. Acta Biomaterialia, 2006, 2, 403-408.	8.3	24
131	Preparation of poly(l-lactic acid)-polysiloxane-calcium carbonate hybrid membranes for guided bone regeneration. Biomaterials, 2006, 27, 1216-1222.	11.4	81
132	Preparation of Fast Proton-Conducting Phosphate Glass-Derived Hydrogels and their Electrochemical Properties. Advanced Materials Research, 2006, 15-17, 327-332.	0.3	3
133	Preparation of Macroporous Glass-Ceramic Composites Containing Î ² -TCP. Advanced Materials Research, 2006, 11-12, 223-226.	0.3	0
134	Preparation of Zinc Phosphate Glass-Derived Hydrogels and Their Proton Conductivities. Advanced Materials Research, 2006, 11-12, 153-158.	0.3	3
135	High Cellular Biocompatibility of Calcium Carbonate / Poly (Lactic Acid) Composites Doped with Silicon. Key Engineering Materials, 2006, 309-311, 1113-1116.	0.4	0
136	Electric double-layer capacitor based on zinc metaphosphate glass-derived hydrogel. Applied Physics Letters, 2006, 88, 153501.	3.3	4
137	HYDROXYCARBONATE APATITE COATING ON CALCIUM CARBONATE COMPOISTES BY A BIOMIMETIC METHOD. Phosphorus Research Bulletin, 2006, 20, 175-180.	0.6	1
138	Mechanical Properties of Biocompatible Beta-Type Titanium Alloy Coated with Calcium Phosphate Invert Glass-Ceramic Layer. Materials Transactions, 2005, 46, 1564-1569.	1.2	17
139	Preparation of bonelike apatite composite for tissue engineering scaffold. Science and Technology of Advanced Materials, 2005, 6, 48-53.	6.1	29
140	Bioactive calcium pyrophosphate glasses and glass-ceramics. Acta Biomaterialia, 2005, 1, 55-64.	8.3	91
141	Surface Potential of Poly(lactic acid) Composites Containing Calcium Carbonates in Simulated Body Fluid. Journal of the American Ceramic Society, 2005, 88, 1964-1966.	3.8	2
142	Preparation of Poly(Lactic Acid) Composite Hollow Spheres with an Open Channel. Key Engineering Materials, 2005, 284-286, 301-304.	0.4	5
143	Formation of Hydroxycarbonate Apatite Layer on Poly(Lactic Acid) Composites in Simulated Body Fluid. Key Engineering Materials, 2005, 284-286, 489-492.	0.4	1
144	Formation of metaphosphate hydrogels and their proton conductivities. Journal of Non-Crystalline Solids. 2005, 351, 691-696.	3.1	20

#	Article	IF	CITATIONS
145	Preparation of Calcium Carbonate / Poly(lactic acid) Composite (CCPC) Hollow Spheres. Key Engineering Materials, 2004, 254-256, 533-536.	0.4	3
146	Biocomposite Materials for Biotechnology. Biological and Medical Physics Series, 2004, , 163-194.	0.4	3
147	Apatite formation on titania–vaterite powders in simulated body fluid. Journal of the European Ceramic Society, 2004, 24, 2125-2130.	5.7	30
148	ELECTRIC DOUBLE LAYER CAPACITORS BASED ON PHOSPHATE GLASS-DERIVED HYDROGELS PREPARED BY A CHEMICOVECTORIAL METHOD. Phosphorus Research Bulletin, 2004, 17, 85-90.	0.6	1
149	Bonelike Apatite Coating on Skeleton of Poly(lactic acid) Composite Sponge. Materials Transactions, 2004, 45, 989-993.	1.2	10
150	Morphology of Calcium Phosphate Invert Glass-Ceramic Layer Coated on Surface of Beta Type Titanium Alloy for Biomedical Applications. Materia Japan, 2004, 43, 1034-1034.	0.1	0
151	Bioactive calcium phosphate invert glass-ceramic coating on β-type Ti–29Nb–13Ta–4.6Zr alloy. Biomaterials, 2003, 24, 283-290.	11.4	70
152	Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials, 2003, 24, 3247-3253.	11.4	180
153	Joining of Calcium Phosphate Invert Glass eramics on a βâ€Type Titanium Alloy. Journal of the American Ceramic Society, 2003, 86, 1031-1033.	3.8	14
154	Apatite-Forming Ability of Calcium Phosphate Glass-Ceramics Improved by Autoclaving. Key Engineering Materials, 2003, 254-256, 753-756.	0.4	4
155	Novel Machinable Calcium Phosphate Glass-Ceramics for Biomedical Use. Materials Science Forum, 2003, 426-432, 3183-3188.	0.3	5
156	Calcium Phosphate Invert Glasses and Glass-Ceramics with Apatite-Forming Ability. Key Engineering Materials, 2003, 240-242, 265-268.	0.4	6
157	Enhancement of Biomimetic Apatite Forming Ability of Calcium Phosphate Glass-Ceramic by a Hydrothermal Treatment. Journal of the Ceramic Society of Japan, 2003, 111, 633-635.	1.3	10
158	Biomimetic apatite formation on poly(lactic acid) composites containing calcium carbonates. Journal of Materials Research, 2002, 17, 727-730.	2.6	34
159	MACHINABLE CALCIUM PHOSPHATE CERAMICS. Phosphorus Research Bulletin, 2002, 13, 153-158.	0.6	4
160	Apatite formation on TiO2 in simulated body fluid. Journal of Crystal Growth, 2002, 235, 235-240.	1.5	184
161	Dynamics of Proton Transfer in the Solâ^'Gel-Derived P2O5â~'SiO2Glasses. Journal of Physical Chemistry B, 2001, 105, 4653-4656.	2.6	44
162	Hydrogelation of Calcium Metaphosphate Glass. Chemistry Letters, 2001, 30, 820-821.	1.3	19

#	Article	IF	CITATIONS
163	Preparation of Machineable Glass-Ceramics in the Na2O-CaO-TiO2-P2O5 System Journal of the Ceramic Society of Japan, 2001, 109, 719-721.	1.3	1
164	BIOMIMETIC APATITE FORMATION ON CALCIUM PHOSPHATE INVERT GLASSES. Phosphorus Research Bulletin, 2001, 12, 39-44.	0.6	8
165	Calcium phosphate invert glass-ceramic coatings joined by self-development of compositionally gradient layers on a titanium alloy. Biomaterials, 2001, 22, 577-582.	11.4	46
166	Effect of Phosphorus Ions on the Proton Conductivity in the Sol–Gelâ€Derived Porous Glasses. Journal of the American Ceramic Society, 2001, 84, 2553-2556.	3.8	33
167	Machinable calcium pyrophosphate glass-ceramics. Journal of Materials Research, 2001, 16, 876-880.	2.6	19
168	Apatite Formation on Calcium Phosphate Invert Glasses in Simulated Body Fluid. Journal of the American Ceramic Society, 2001, 84, 450-52.	3.8	67
169	Prospects of Sol-Gel Process for Spectral Hole-Burning Glasses. Journal of Sol-Gel Science and Technology, 2000, 19, 253-256.	2.4	0
170	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 19, 383-386.	2.4	9
171	Hydrogen Gas Sensing of High Electrical Conducting-P2O5-SiO2 Glasses Prepared by Sol-Gel Process. Journal of Sol-Gel Science and Technology, 2000, 19, 559-562.	2.4	6
172	Surface modification of calcium metaphosphate fibers. Journal of Materials Science: Materials in Medicine, 2000, 11, 223-225.	3.6	8
173	Preparation of Calcium Phosphate Glass-Ceramics and their Coating on Titanium Alloys. Key Engineering Materials, 2000, 192-195, 223-226.	0.4	8
174	Preparation of polylactic acid composites containing β–Ca(PO3)2 fibers. Journal of Materials Research, 1999, 14, 418-424.	2.6	20
175	Bioactive ceramics prepared by sintering and crystallization of calcium phosphate invert glasses. Biomaterials, 1999, 20, 1415-1420.	11.4	64
176	Title is missing!. Journal of Materials Science Letters, 1999, 18, 2021-2023.	0.5	10
177	Calcium phosphate invert glasses with soda and titania. Journal of Non-Crystalline Solids, 1999, 243, 70-74.	3.1	105
178	High Proton Conductivity in Porous P2O5â^'SiO2Glasses. Journal of Physical Chemistry B, 1999, 103, 9468-9472.	2.6	112
179	BIOACTIVE CALCIUM PHOSPHATE GLASS-CERAMICS IN THE PYROPHOSPHATE REGION. Phosphorus Research Bulletin, 1999, 10, 534-539.	0.6	4
180	Role of P2O5 on Protonic Conduction in Sol-Gel-Derived Binary Phosphosilicate Glasses Journal of the Ceramic Society of Japan, 1999, 107, 1037-1040.	1.3	8

#	Article	IF	CITATIONS
181	Titanium Phosphate Glassâ€Ceramics with Silver Ion Exchangeability. Journal of the American Ceramic Society, 1999, 82, 765-767.	3.8	18
182	POLYLACTIC ACID COMPOSITES CONTAINING HYDROXYAPATITE FIBERS. , 1999, , .		1
183	Microporous Materials with an Integrated Skeleton of AgTi2(PO4)3and Ti(HPO4)2·2H2O Crystals. Chemistry of Materials, 1998, 10, 3562-3567.	6.7	12
184	An oxygen sensor based on copper(I)-conducting CuTi2(PO4)3 glass ceramics. Applied Physics Letters, 1998, 73, 3297-3299.	3.3	11
185	Novel calcium phosphate ceramics prepared by powder sintering and crystallization of glasses in the pyrophosphate region. Journal of Materials Research, 1998, 13, 3357-3360.	2.6	36
186	Novel Preparation Method of Hydroxyapatite Fibers. Journal of the American Ceramic Society, 1998, 81, 1665-1668.	3.8	68
187	Bi–Sr–Ca–Cu–O superconducting thin plates prepared by glass-ceramic processing: Dependence of Tc on the thickness. Journal of Materials Research, 1997, 12, 332-337.	2.6	5
188	Preparation of CaCO ₃ Fibers Coated with Fine Particles of Al(OH) ₃ . Journal of the Ceramic Society of Japan, 1997, 105, 374-376.	1.3	1
189	Preparation and Compressive Strength Behavior of Porous Ceramics with β a(PO ₃) ₂ Fiber Skeletons. Journal of the American Ceramic Society, 1997, 80, 225-231.	3.8	35
190	Porous Glassâ€Ceramics with Bacteriostatic Properties in Silverâ€Containing Titanium Phosphates: Control of Release of Silver Ions from Glassâ€Ceramics into Aqueous Solution. Journal of the American Ceramic Society, 1997, 80, 777-780.	3.8	23
191	Preparation of Porous Glassâ€Ceramics with a Skeleton of NASICONâ€Type Crystal CuTi ₂ (PO ₄) ₃ . Journal of the American Ceramic Society, 1997, 80, 822-824.	3.8	21
192	Superprotonic Conductors of Glassy Zirconium Phosphates. Journal of the Electrochemical Society, 1996, 143, 144-147.	2.9	102
193	Preparation Conditions for Aragonite Whiskers by Carbonation Process. Journal of the Ceramic Society of Japan, 1996, 104, 196-200.	1.3	18
194	POROUS TITANIUM PHOSPHATE GLASS-CERAMICS WITH BACTERIOSTATIC ACTIVITIES. Phosphorus Research Bulletin, 1996, 6, 253-256.	0.6	2
195	Preparation of High-Strength Calcium Phosphate Ceramics with Low Modulus of Elasticity Containing beta-Ca(PO3)2 Fibers. Journal of the American Ceramic Society, 1996, 79, 1821-1824.	3.8	44
196	Direct Joining of BSCCO Superconducting Glass-Ceramics Using a Flame-Melting Method. Journal of the American Ceramic Society, 1996, 79, 885-888.	3.8	7
197	Preparation of CaF2 Fibers. Journal of the American Ceramic Society, 1996, 79, 2986-2988.	3.8	2
198	Preparation of Aragonite Whiskers. Journal of the American Ceramic Society, 1995, 78, 1983-1984.	3.8	64

#	Article	IF	CITATIONS
199	Formation of Bi-2212 superconducting whiskers from melt-quenched BSCCO containing alumina. Journal of Materials Research, 1994, 9, 1098-1103.	2.6	12
200	Phase Separation and Crystallization of BiSrCaCu2Al0.5Ox Glass. Journal of the American Ceramic Society, 1993, 76, 1885-1887.	3.8	18
201	Generation of Active Oxygen Species on Reaction Between Ceramics in CaO-SiO2-P2O5System and Polymorphonuclear Cells. Phosphorus, Sulfur and Silicon and the Related Elements, 1993, 76, 243-246.	1.6	4
202	Bioceramics Composed of Calcium Polyphosphate Fibers. Phosphorus, Sulfur and Silicon and the Related Elements, 1993, 76, 247-250.	1.6	7
203	Superconducting ceramics of Bi2Sr2Ca1Cu2Oxprepared by heating in a vacuumâ€sealed vessel. Applied Physics Letters, 1992, 60, 2300-2302.	3.3	2
204	Preparation of Calcium Phosphate Fibers for Applications to Biomedical Fields. Journal of the Ceramic Society of Japan, 1992, 100, 1088-1089.	1.3	25
205	Preparation of Zirconia-Toughened Bioactive Glass-Ceramic Composite by Sinter-Hot Isostatic Pressing. Journal of the American Ceramic Society, 1992, 75, 1103-1107.	3.8	26
206	Bioactivity of Zirconia-Toughened Glass-Ceramics. Journal of the American Ceramic Society, 1992, 75, 1884-1888.	3.8	24
207	Cotton-Wool-Like Resorbable Bone Void Fillers Containing β-TCP and Calcium Carbonate Particles. Key Engineering Materials, 0, 782, 53-58.	0.4	6
208	Enhancing Effect of Autoclaving on Bioactivity of ß-Titanium Alloy Coated with Calcium Phosphate Glass-Ceramic. Key Engineering Materials, 0, , 243-246.	0.4	1
209	Bone Regeneration: Bioresorbable Hybrid Membranes for. , 0, , 1104-1114.		0