Adrianne G Huxtable

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6580286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypoxiaâ€induced phrenic longâ€term facilitation: emergent properties. Annals of the New York Academy of Sciences, 2013, 1279, 143-153.	1.8	117
2	Glia Contribute to the Purinergic Modulation of Inspiratory Rhythm-Generating Networks. Journal of Neuroscience, 2010, 30, 3947-3958.	1.7	92
3	Systemic inflammation impairs respiratory chemoreflexes and plasticity. Respiratory Physiology and Neurobiology, 2011, 178, 482-489.	0.7	80
4	P2Y1 Receptor Modulation of the Pre-Botzinger Complex Inspiratory Rhythm Generating Network In Vitro. Journal of Neuroscience, 2007, 27, 993-1005.	1.7	72
5	Systemic LPS induces spinal inflammatory gene expression and impairs phrenic long-term facilitation following acute intermittent hypoxia. Journal of Applied Physiology, 2013, 114, 879-887.	1.2	69
6	Intermittent Hypoxia-Induced Spinal Inflammation Impairs Respiratory Motor Plasticity by a Spinal p38 MAP Kinase-Dependent Mechanism. Journal of Neuroscience, 2015, 35, 6871-6880.	1.7	60
7	Phrenic Long-Term Facilitation Requires PKCÎ, Activity within Phrenic Motor Neurons. Journal of Neuroscience, 2015, 35, 8107-8117.	1.7	55
8	Tripartite Purinergic Modulation of Central Respiratory Networks during Perinatal Development: The Influence of ATP, Ectonucleotidases, and ATP Metabolites. Journal of Neuroscience, 2009, 29, 14713-14725.	1.7	47
9	The impact of inflammation on respiratory plasticity. Experimental Neurology, 2017, 287, 243-253.	2.0	46
10	Interpreting Deactivations in Neuroimaging. Frontiers in Psychology, 2012, 3, 27.	1.1	39
11	Gestational intermittent hypoxia increases susceptibility to neuroinflammation and alters respiratory motor control in neonatal rats. Respiratory Physiology and Neurobiology, 2018, 256, 128-142.	0.7	38
12	ATP in central respiratory control: A three-part signaling system. Respiratory Physiology and Neurobiology, 2008, 164, 131-142.	0.7	30
13	Adrenergic α ₁ receptor activation is sufficient, but not necessary for phrenic long-term facilitation. Journal of Applied Physiology, 2014, 116, 1345-1352.	1.2	25
14	Isolated in vitro brainstem–spinal cord preparations remain important tools in respiratory neurobiology. Respiratory Physiology and Neurobiology, 2012, 180, 1-7.	0.7	16
15	P2Y ₁ receptorâ€mediated potentiation of inspiratory motor output in neonatal rat <i>in vitro</i> . Journal of Physiology, 2014, 592, 3089-3111.	1.3	15
16	Time and dose-dependent impairment of neonatal respiratory motor activity after systemic inflammation. Respiratory Physiology and Neurobiology, 2020, 272, 103314.	0.7	12
17	IL-1 receptor activation undermines respiratory motor plasticity after systemic inflammation. Journal of Applied Physiology, 2018, 125, 504-512.	1.2	11
18	One bout of neonatal inflammation impairs adult respiratory motor plasticity in male and female rats. ELife, 2019, 8, .	2.8	11

#	Article	IF	CITATIONS
19	Substance P Modulation of Hypoglossal Motoneuron Excitability During Development: Changing Balance Between Conductances. Journal of Neurophysiology, 2010, 104, 854-872.	0.9	10
20	Impact of inflammation on developing respiratory control networks: rhythm generation, chemoreception and plasticity. Respiratory Physiology and Neurobiology, 2020, 274, 103357.	0.7	8
21	Cyclooxygenase enzyme activity does not impair respiratory motor plasticity after one night of intermittent hypoxia. Respiratory Physiology and Neurobiology, 2018, 256, 21-28.	0.7	6
22	Spinal protein phosphatase 1 constrains respiratory plasticity after sustained hypoxia. Journal of Applied Physiology, 2018, 125, 1440-1446.	1.2	5
23	Viral Mimetic-Induced Inflammation Abolishes Q-Pathway, but Not S-Pathway, Respiratory Motor Plasticity in Adult Rats. Frontiers in Physiology, 2019, 10, 1039.	1.3	5
24	Maternal Methadone Destabilizes Neonatal Breathing and Desensitizes Neonates to Opioid-Induced Respiratory Frequency Depression. Frontiers in Physiology, 2021, 12, 604593.	1.3	5
25	P2Y receptor modulation of XII inspiratory motor output in neonatal rat. FASEB Journal, 2007, 21, A1295.	0.2	1
26	Glial contribution to the modulation of preBötzinger Complex rhythm generating networks by ATP. FASEB Journal, 2009, 23, .	0.2	0
27	Neonatal Inflammation Impairs Multiple Pathways to Adult Respiratory Plasticity. FASEB Journal, 2018, 32, 625.13.	0.2	Ο
28	Viralâ€Induced Systemic Inflammation Undermines Respiratory Motor Plasticity. FASEB Journal, 2019, 33, 731.9.	0.2	0
29	Neonatal Inflammation Sexâ€dependently Impairs Adult, Spinal Microglia. FASEB Journal, 2020, 34, 1-1.	0.2	Ο
30	Maternal opioids decrease muâ€opioid receptor expression in the neonatal preBötzinger Complex. FASEB Journal, 2022, 36, .	0.2	0