Changhyuk Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6579916/publications.pdf

Version: 2024-02-01

623574 477173 29 910 14 29 g-index citations h-index papers 39 39 39 1234 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	4.7	164
2	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.	3.3	118
3	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	6.0	94
4	Molecular understanding of new-particle formation from <i>α</i> -pinene between â~50 and +25 °C. Atmospheric Chemistry and Physics, 2020, 20, 9183-9207.	1.9	68
5	Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds. Environmental Science & Environmental Scie	4.6	66
6	Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 2020, 20, 7359-7372.	1.9	58
7	Molecular understanding of the suppression of new-particle formation by isoprene. Atmospheric Chemistry and Physics, 2020, 20, 11809-11821.	1.9	49
8	The driving factors of new particle formation and growth in the polluted boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 14275-14291.	1.9	38
9	Molecular Composition and Volatility of Nucleated Particles from α-Pinene Oxidation between â^'50 °C and +25 °C. Environmental Science & Environmen	4.6	32
10	A flame metal combustion method for production of nanoparticles. Powder Technology, 2010, 197, 170-176.	2.1	29
11	Two-band luminescence from an intrinsic defect in spherical and terraced MgO nanoparticles. Applied Physics Letters, 2015, 106, .	1.5	26
12	Synthesis of terraced and spherical MgO nanoparticles using flame metal combustion. Powder Technology, 2017, 305, 132-140.	2.1	20
13	Removal of airborne sub-3Ânm particles using fibrous filters and granular activated carbons. Carbon, 2016, 104, 125-132.	5. 4	19
14	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.	1.5	18
15	Experimental study on the filtration efficiency of activated carbons for 3–30 nm particles. Carbon, 2015, 93, 226-229.	5.4	15
16	Evaluation of concentration measurement techniques of colloidal nanoparticles for microfiltration and ultrafiltration applications: Inductively coupled plasma-mass spectrometry, nanoparticle tracking analysis and electrospray-scanning mobility particle sizer. Separation and Purification Technology, 2017, 184, 34-42.	3.9	12
17	The effect of filtered nanoparticles on gas filtration efficiency of granular activated carbons. Carbon, 2017, 121, 63-71.	5.4	12
18	Soft X-ray-assisted detection method for airborne molecular contaminations (AMCs). Journal of Nanoparticle Research, 2015, 17, 1.	0.8	11

#	Article	IF	CITATIONS
19	Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environmental Science Atmospheres, 2021, 1, 434-448.	0.9	10
20	Real-time and online screening method for materials emitting volatile organic compounds. Journal of Nanoparticle Research, $2016,18,1.$	0.8	9
21	Measurements of Outgassing From PM _{2.5} Collected in Xi'an, China Through Soft X-Ray-Radiolysis. IEEE Transactions on Semiconductor Manufacturing, 2019, 32, 259-266.	1.4	6
22	Assessment of black carbon concentration as a potential measure of air quality at multi-purpose facilities. Journal of Aerosol Science, 2019, 138, 105450.	1.8	5
23	The nano-scanning electrical mobility spectrometer (nSEMS) and its application to size distribution measurements of 1.5–25 nm particles. Atmospheric Measurement Techniques, 2021, 14, 5429-5445.	1.2	5
24	The Spider DMA: A miniature radial differential mobility analyzer. Aerosol Science and Technology, 2020, 54, 175-189.	1.5	4
25	Investigation of Airborne Molecular Contamination in Cleanroom Air Environment through Portable Soft X-Ray Radiolysis Detector. Applied Sciences (Switzerland), 2020, 10, 978.	1.3	4
26	Enhanced mineral carbonation at room temperature through MgO nanocubes synthesized by self-combustion. Journal of Environmental Chemical Engineering, 2021, 9, 105592.	3.3	4
27	Real-time detection of vehicle-originated condensable particulate matter through thermodenuder integrated aerosol measurement method at tailpipes. Environmental Research, 2022, 212, 113487.	3.7	3
28	Light emission induced by electric current at room temperature through the defect networks of MgO nanocubes. AIP Advances, 2019, 9, 125305.	0.6	2
29	Effects of injection pressure and length-diameter ratio on the velocity and cavitation inside injector nozzle. Sadhana - Academy Proceedings in Engineering Sciences, 2021, 46, 1.	0.8	1